Abstract:
The present invention relates to a signal modulation loop for the multi-mode mobile communication. The adaptive up-conversion modulation loop is applied in the multi-mode mobile communication, and is used for signal integration for the communication system comprising the second generation communication system, the global system for mobile communication (GSM), and the third generation communication system, the wideband code division multiple access (WCDMA), so as to achieve the object of multi-mode communication by using a single modulation loop.
Abstract:
An illumination system includes a coherent light source, a phosphor switching module, a beam combining unit and a diffusion switching module. The coherent light source emits a coherent light beam. The phosphor switching module includes a light passing section and a first phosphor reflecting section. The light passing section and first phosphor reflecting section are switched into a transmission path of the coherent light beam by turns. The first phosphor reflecting section converts and reflects the coherent light beam into a first color beam. The beam combining unit combines the coherent light beam passing through the light passing section and the first color light beam. The diffusion switching module includes a light diffusion section and a first light permeable section to be switched into the transmission paths of the coherent light beam and the first color light beam by turns. A projection apparatus is also disclosed.
Abstract:
An illumination system includes a coherent light source, a phosphor switching module, a beam combining unit and a diffusion switching module. The coherent light source emits a coherent light beam. The phosphor switching module includes a light passing section and a first phosphor reflecting section. The light passing section and first phosphor reflecting section are switched into a transmission path of the coherent light beam by turns. The first phosphor reflecting section converts and reflects the coherent light beam into a first color beam. The beam combining unit combines the coherent light beam passing through the light passing section and the first color light beam. The diffusion switching module includes a light diffusion section and a first light permeable section to be switched into the transmission paths of the coherent light beam and the first color light beam by turns. A projection apparatus is also disclosed.
Abstract:
A system for providing, from a direct current (DC) voltage source, an alternating current (AC) to an electrical grid outputting a grid voltage, the system including: a transformer for coupling to the DC voltage source through a first switch controlled by a first control signal, and configured to provide a converted voltage based on a DC voltage; a rectifier coupled to the transformer, and configured to generate an envelope voltage of the converted voltage; a plurality of switches coupled to the rectifier to receive the generated envelope voltage of the converted voltage, the plurality of switches being controlled by a plurality of control signals, respectively, and configured to generate the AC from the generated envelope voltage of the converted voltage; and control apparatus coupled to the first switch and the plurality of switches, and configured to provide, based on the grid voltage, the first control signal and the plurality of control signals.
Abstract:
An RC triggered ESD protection device comprises a discharge transistor, a driver circuit and a trigger circuit. The trigger circuit comprises a plurality of native NMOS transistors connected in parallel with a plurality of PMOS transistors operating as resistors. The relatively small resistance of the plurality of native NMOS transistors helps to keep a stable RC time constant value so that the ESD protection device can avoid a leakage current during a power up operation.
Abstract:
An illumination module including a light emitting element, a wavelength conversion unit, a control unit, and a determining unit is provided. The light emitting element is capable of emitting an excitation light beam. The wavelength conversion unit is disposed on a transmission path of the excitation light beam for converting the excitation light beam into a color light beam. The control unit is connected to the wavelength conversion unit and capable of driving the wavelength conversion unit to rotate and to shift relative to the excitation light beam. The determining unit is electrically connected to the control unit. When the determining unit determines that a shifting condition is satisfied, the determining unit instructs the control unit to shift the wavelength conversion unit relative to the excitation light beam, so as to change the irradiation position of the excitation light beam on the wavelength conversion unit.
Abstract:
A resonant amplifier is provided. A resonant inductor is connected in series between a source (emitter) of a common gate (base) transistor and an input point (i.e. output point of previous stage), and a resonant capacitor is connected between the input point and a ground or a voltage source connected to a loading end, such that a lossy resonant cavity is formed for carrying out resonance to amplify the signal. Then, the amplified signal is drawn out by the common gate (base) architecture. Therefore, the gain of the resonant amplifier can be boosted at desired frequency.
Abstract:
A method and device for wireless monitoring of system status is provided. The method employs a radio frequency identification (RFID) transponder and a RFID reader for transmission of system status. When the system monitoring program executed in the computer device detects abnormality, it would generate a system status code and send it to the RFID transponder, where the status code is combined with an ID code into a packet and sent out by wireless devices. The RFID reader integrated in an electronic device is used to receive the packet, make reference to the reference table embedded in the electronic device to determine the specific message represented by the system status code, and finally display the ID code and the corresponding status message.
Abstract:
An interface card anchoring structure is mounted on a bracket of a case of an electronic device corresponding to an insertion slot of a main board of the case. The bracket has two opposing inner sides that have respectively an opening and a trough formed thereon. The interface card anchoring structure includes a pivot lug and a coupling assembly. The pivot lug is located on one inner side where the opening is formed. The coupling assembly can selectively latch one corner of the interface card after the interface card has been wedged in the bracket to anchor a connector of the interface card in the insertion slot of the main board.
Abstract:
An adjustable shoe mounting structure for bicycle brake device is disclosed. Users may use the first adjusting member of the adjusting assembly to be turned relative to the second adjusting member of the adjusting assembly. That is, the first adjusting member may be pulled inwardly to turn an angle. The first adjusting member uses the elasticity of the spring to move axially and the brake shoe may be adjusted the angle by matching convex teeth with different heights of the first adjusting member and the second adjusting member. It may achieve the efficiency of adjusting brake shoe. Also, it has simple structure and is easy to operate while adjusting.