Abstract:
An additively manufactured component with an internal passage; and a multiple of ultrasonic horns additively manufactured within the internal passage. A method of removing conglomerated powder from an internal passage of an additively manufacturing a component, including ultrasonically exciting at least one of a multiple of the ultrasonic horns within an internal passage of an additively manufactured component
Abstract:
A structure includes a first body section that has a wall that spans in a vertical direction. The wall has a relatively thin thickness with respect to a length and a width of the wall. A second body section is arranged next to, but spaced apart from, the first body section. A gusset connects the first body section and the second body section. The gusset extends obliquely from the wall of the first body section with respect to the vertical direction such that the gusset is self-supporting. The first body section has a geometry that corresponds to an end-use component exclusive of the gusset.
Abstract:
An exemplary method for determining a set of additive manufacturing parameters includes, a) determining a nominal parameter of at least one surface of a component, b) determining at least a second order variation in the nominal parameter, c) predicting an actual resultant dimension based at least in part on the nominal parameter and the second order variation, and d) adjusting at least one additive manufacturing process parameter in response to the predicted actual resultant dimension.
Abstract:
The invention relates to an additive manufacturing apparatus and method. According to the invention, an additive manufacturing apparatus includes a material supply system. The material supply system delivers layers of partially sintered pulverant material to an additive manufacturing device.
Abstract:
A double walled stator housing includes a first stator housing wall, a second stator housing wall located radially outward from the first stator housing wall, and an air gap located between the first and the second stator housing walls. The housing also includes at least one support structure attached to the first stator housing wall and the second stator housing wall, spanning the air gap and configured to minimize heat transfer between the first wall and the second wall.
Abstract:
A core engine article includes a combustor liner defining a combustion chamber therein and a turbine nozzle. The combustor liner includes a plurality of injector ports, and the plurality of injector ports have a shape that tapers to a corner on a forward side of the injector ports. The turbine nozzle includes a plurality of airfoils. The combustor liner and turbine nozzle are integral with one another. A method of making a core engine article is also disclosed.
Abstract:
A component includes an additively manufactured component with an internal passage; and an additively manufactured elongated member within the internal passage. A method of additively manufacturing a component including additively manufacturing a component with an internal passage; and additively manufacturing an elongated member within the internal passage concurrent with additively manufacturing the component.
Abstract:
A component for a gas turbine engine is disclosed. In various embodiments, the component includes a diffuser ring, a combustor and a spring element connecting the diffuser ring to the combustor.
Abstract:
An exemplary method for determining a set of additive manufacturing parameters includes, a) determining a nominal parameter of at least one surface of a component, b) determining at least a second order variation in the nominal parameter, c) predicting an actual resultant dimension based at least in part on the nominal parameter and the second order variation, and d) adjusting at least one additive manufacturing process parameter in response to the predicted actual resultant dimension.
Abstract:
A powder processing machine includes a work bed, a powder deposition device operable to deposit powder in the work bed, at least one energy beam device operable to emit an energy beam with a variable beam power and direct the energy beam onto the work bed with a variable beam scan rate to melt and fuse regions of the powder, and a controller operable to dynamically control at least one of the beam power or the beam scan rate to change how the powder melts and fuses. The controller is configured to determine whether an instant set of process parameters falls within a defect condition or a non-defect condition and adjust at least one of the beam power or the beam scan rate responsive to the defect condition such that the instant set of process parameters falls within the non-defect condition.