Abstract:
An additively manufactured component with an internal passage; and a multiple of ultrasonic horns additively manufactured within the internal passage. A method of removing conglomerated powder from an internal passage of an additively manufacturing a component, including ultrasonically exciting at least one of a multiple of the ultrasonic horns within an internal passage of an additively manufactured component
Abstract:
An exemplary method for determining a set of additive manufacturing parameters includes, a) determining a nominal parameter of at least one surface of a component, b) determining at least a second order variation in the nominal parameter, c) predicting an actual resultant dimension based at least in part on the nominal parameter and the second order variation, and d) adjusting at least one additive manufacturing process parameter in response to the predicted actual resultant dimension.
Abstract:
An exemplary method of manufacturing an electrical discharge machining electrode includes, among other things, immersing at least a portion of an electrode base in a fluid, and electroplating an electrode coating containing diamond to an electrode base.
Abstract:
A method for abrasive flow machining includes moving an abrasive media through a high-aspect passage of a workpiece. Local pressure of the abrasive media is increased at target abrasion surfaces of the high-aspect passage using a passage geometry that is configured to direct flow of the abrasive media into the target abrasion surfaces such that the target abrasion surfaces are preferentially polished by the abrasive media over other, non-targeted surfaces of the high-aspect passage at which the flow of the abrasive media is not directed into.
Abstract:
An abrasive profiling tool that may be part of a robotic machining system for machining a trailing edge of an airfoil, includes a shank extending along a rotational axis, a bearing guide rotationally secured to a distal end of the shank for riding upon the airfoil; and an abrasive profiler projecting radially and rigidly outward from the shank for grinding at least the trailing edge as the shank rotates. The profiler may include a round-over portion for grinding the trailing edge and a chamfered blending portion for grinding adjacent surfaces of the airfoil to produce a smooth transition from the adjacent surfaces and to the trailing edge.
Abstract:
A method for finishing a film cooled article includes providing a film cooled article including at least one inner cooling plenum and at least one opening connecting the inner cooling plenum to an exterior surface of the film cooled article, positioning a machining element in contact with the exterior surface of the film cooled article, automatically moving the machining element along the exterior surface while maintaining contact between the machining tool and the surface, identifying an actual position of at least one film opening based on sensory feedback from the machining element using a controller, removing material from the exterior surface at the at least one film opening using the machining element, thereby creating a depression at the at least one film opening.
Abstract:
A method of making a gas turbine engine component includes providing a nickel based alloy workpiece and removing material from the workpiece surface using an abrasive machining operation to form an axisymmetric surface on the workpiece using the abrasive machining operation. The workpiece axisymmetric surface and workpiece interior portion have uniform hardness and micro structure following the removing operation.
Abstract:
A method for finishing a film cooled article includes providing a film cooled article including at least one inner cooling plenum and at least one opening connecting the inner cooling plenum to an exterior surface of the film cooled article, positioning a machining element in contact with the exterior surface of the film cooled article, automatically moving the machining element along the exterior surface while maintaining contact between the machining tool and the surface, identifying an actual position of at least one film opening based on sensory feedback from the machining element using a controller, removing material from the exterior surface at the at least one film opening using the machining element, thereby creating a depression at the at least one film opening.
Abstract:
A method of making a part includes creating a computer file defining the part in layers and a model of a body blank to represent a space defined by a cavity in the part. The part is built using an additive manufacturing process. A layer of powdered material is deposited into a powder bed. The powder bed is preheated by applying a first beam current with a first energy. A second beam current with a second energy level greater than the first energy level is applied to a first region of the layer of the powder bed not including a portion of the cavity. A second region of the powdered material is selectively melted. The partially built part and layer of the powdered material are lowered. Steps are repeated for additional layers in accordance with the computer file to create the part.
Abstract:
An additive manufacturing process includes simultaneously constructing a component and a non-contacting thermal support for the component. The non-contacting thermal support includes a three dimensional negative of the component. The non-contacting thermal support transfers heat from the component into a heat sink.