Abstract:
A powder processing machine includes a work bed, a powder deposition device operable to deposit powder in the work bed, at least one energy beam device operable to emit an energy beam with a variable beam power and direct the energy beam onto the work bed with a variable beam scan rate to melt and fuse regions of the powder, and a controller operable to dynamically control at least one of the beam power or the beam scan rate to change how the powder melts and fuses. The controller is configured to determine whether an instant set of process parameters falls within a defect condition or a non-defect condition and adjust at least one of the beam power or the beam scan rate responsive to the defect condition such that the instant set of process parameters falls within the non-defect condition.
Abstract:
An abradable seal for a gas turbine engine includes a seal body that has a seal side and a non-seal side. The seal body includes an abradability characteristic that varies by locality.
Abstract:
A metal powder reconditioning apparatus and method recondition contaminated residual powder from an additive manufacturing device. The apparatus and method include a reducing chamber that receives contaminated residual powder resulting from an additive manufacturing process and remove oxygen from the contaminated residual powder to produce reconditioned powder. The reconditioned powder may be reused in the additive manufacturing process, or may be stored in a non-oxidizing atmosphere for later reuse.
Abstract:
A method of obtaining a sample of materials includes building a product through an additive manufacturing process. A capsule is formed with an internal chamber inside of the capsule. The capsule is formed during the building of the additive manufacturing product. A sample of powder is encapsulated inside the internal chamber as the capsule is built. The internal chamber is hermetically sealed from an exterior environment to retain the sample of powder in the internal chamber.
Abstract:
An additive manufacturing process includes simultaneously constructing a component and a non-contacting thermal support for the component. The non-contacting thermal support includes a three dimensional negative of the component. The non-contacting thermal support transfers heat from the component into a heat sink.
Abstract:
A system includes a build plate, at least one component that is additively manufactured on the build plate from a powder material, and at least one capsule that is additively manufactured on the build plate from the same powder material. The capsule includes an additively manufactured core that is representative of one or more scaled build configuration layers of the at least one component and an arrangement of the layers on the build plate, a sample of unused powder material, and a shell that at least partially encloses the core and the sample.
Abstract:
An additive manufacturing system can include a powder dispenser; a gate adjacent to the powder dispenser; a recoater blade system; and a control operable to move the gate with respect to the powder dispenser to selectively dispense powder from the powder dispenser.
Abstract:
A structure includes a first body section that has a wall that spans in a vertical direction. The wall has a relatively thin thickness with respect to a length and a width of the wall. A second body section is arranged next to, but spaced apart from, the first body section. A gusset connects the first body section and the second body section. The gusset extends obliquely from the wall of the first body section with respect to the vertical direction such that the gusset is self-supporting. The first body section has a geometry that corresponds to an end-use component exclusive of the gusset.
Abstract:
A method for operating an additive manufacturing apparatus, the method comprises directing a first energy beam along a surface contour vector in a build plane. A second energy beam is directed along a plurality of substantially parallel hatch vectors disposed in the build plane inward of the surface contour vector. A sum of the surface contour vector and the plurality of hatch vectors define a processed powder region in the build plane. A third energy beam is directed along an offset contour vector in the build plane. The offset contour vector includes a plurality of unprocessed powder regions in the build plane between the surface contour vector and the plurality of hatch vectors.
Abstract:
The invention relates to an additive manufacturing apparatus and method. According to the invention, an additive manufacturing apparatus includes a material supply system. The material supply system delivers layers of partially sintered pulverant material to an additive manufacturing device.