Abstract:
A gas turbine engine component includes a structure having an exterior surface. A cooling hole extends from a cooling passage to the exterior surface to provide an exit area on the exterior surface that is substantially circular in shape. A gas turbine engine includes a compressor section and a turbine section. A combustor is provided between the compressor and turbine sections. A component in at least one of the compressor and turbine sections has an exterior surface. A film cooling hole extends from a cooling passage to the exterior surface to provide an exit area that is substantially circular in shape. A method of machining a film cooling hole includes providing a component having an internal cooling passage and an exterior surface, machining a film cooling hole from the exterior surface to the internal cooling passage to provide a substantially circular exit area on the exterior surface.
Abstract:
A gas turbine engine component is described. The component includes a component wall having an internal surface that is adjacent a flow of coolant and an external surface that is adjacent a flow of gas. The component wall includes a cooling hole that has an inlet defined by the internal surface and an outlet defined by the external surface. The cooling holes also has a metering location having the smallest cross-section area of the cooling hole, an internal diffuser positioned between the inlet and the metering location, an accumulation diverter portion of the internal diffuser and an accumulator portion of the internal diffuser.
Abstract:
One embodiment includes a method to regenerate a component. The method includes additively manufacturing the component with at least a portion of the component in a near finished shape. The component is encased in a shell mold, the shell mold is cured, the encased component is placed in a furnace and the component is melted, the component is solidified in the shell mold, and the shell mold is removed from the solidified component.