Abstract:
A gas turbine engine assembly includes a turbine section having first and second turbines mounted for rotation about a common rotational axis within an engine static structure, first and second turbine shafts coaxial with one another and to which the first and second turbines are respectively operatively mounted, first and second towershafts respectively coupled to the first and second turbine shafts, an accessory drive gearbox mounted to the engine static structure, and a transmission transitionable between a first mode where an electric machine is driven at a first speed relative to the first towershaft, and a second mode where the electric machine is driven at a different, second speed relative to the first towershaft.
Abstract:
A gas turbine engine includes a turbine section configured to rotate about an engine axis relative to an engine static structure. A fan section is configured to rotate about the engine axis relative to the engine static structure. A geared architecture operatively connects the fan section to the turbine section. The geared architecture includes an input gear and an output gear both configured to rotate about the engine axis. A set of idler gears are arranged radially outward relative to and operatively coupling with the input and output gears.
Abstract:
A gas turbine engine assembly includes a turbine section having first and second turbines mounted for rotation about a common rotational axis within an engine static structure, first and second turbine shafts coaxial with one another and to which the first and second turbines are respectively operatively mounted, first and second towershafts respectively coupled to the first and second turbine shafts, an accessory drive gearbox mounted to the engine static structure, the accessory drive gearbox including a first set of gears and a second set of gears, the first towershaft extending into a housing and coupled to the first set of gears, the second towershaft extending into the housing and coupled to the second set of gears, an electric machine, and a transmission coupling the electric machine to the first set of gears, the transmission transitionable between a first mode where the electric machine is driven at a first speed relative to the first towershaft, and a second mode where the electric machine is driven at a different, second speed relative to the first towershaft.
Abstract:
An exemplary gas turbine engine assembly includes a transmission coupling a starter generator assembly to a first set of gears. The transmission is transitionable between a first mode where the starter generator assembly is driven at a first speed relative to the second towershaft, and a second mode where the starter generator assembly is driven at a different, second speed relative to the second towershaft.
Abstract:
A gas turbine engine includes a turbine section configured to rotate about an engine axis relative to an engine static structure. A fan section is configured to rotate about the engine axis relative to the engine static structure. A geared architecture operatively connects the fan section to the turbine section. The geared architecture includes an input gear and an output gear both configured to rotate about the engine axis. A set of idler gears are arranged radially outward relative to and operatively coupling with the input and output gears.
Abstract:
A gas turbine engine comprises a lower pressure compressor and a higher pressure compressor. A single turbine drives both the lower pressure compressor and the higher pressure compressor through a gear reduction. The gear reduction includes an actuator and at least two available speeds, such that the lower pressure compressor can selectively be operated at either of at least two speeds relative to the higher pressure compressor. A method of operating a gas turbine engine is also disclosed.
Abstract:
Apparatus and associated methods relate to a segmented radial seal assembly that includes at least two segments, each segment having a first end and a second end at opposite ends. A first segment first end has a protruding feature and defines a tangential vector from a circumferential ring that is formed by the segmented radial seal. The protruding feature defines a curved face having at least a first axis of curvature that is parallel to the tangential vector. The second segment second end has a recessed feature that is matingly engageable to the first segment first end, thereby forming a first radial seal segment joint. The segmented radial seal assembly is configured to surround a shaft.
Abstract:
A seal housing may comprise an aft flange, an outer diameter (OD) ring and a stopper. The stopper may extend radially inward from a radially inner surface of OD ring. The stopper may be configured to interface with a monobloc carbon seal. The stopper may comprise a circumferential stopping portion and an axial stopping portion. There may be a plurality of the stopper.
Abstract:
Apparatus and associated methods relate to a segmented radial seal assembly that includes at least two segments, each segment having a first end and a second end at opposite ends. A first segment first end has a protruding feature and defines a tangential vector from a circumferential ring that is formed by the segmented radial seal. The protruding feature defines a curved face having at least a first axis of curvature that is parallel to the tangential vector. The second segment second end has a recessed feature that is matingly engageable to the first segment first end, thereby forming a first radial seal segment joint. The segmented radial seal assembly is configured to surround a shaft.
Abstract:
A gas turbine engine comprises a low speed spool and a high speed spool, with each of the spools including a turbine to drive a respective one of the spools. The high speed spool rotates at a higher speed than the low speed spool. A high speed power takeoff is driven to rotate by the high speed spool, and a low speed power takeoff is driven to rotate by the low speed spool. The high speed power takeoff drives a starter generator and a permanent magnet alternator. The low speed power takeoff drives a variable frequency generator.