Abstract:
This disclosure relates to a gas turbine engine including a first engine component and a second engine component. The first engine component has a mate face adjacent a mate face of the second engine component. The engine further includes a seal provided between the mate face of the first engine component and the mate face of the second engine component. The seal includes least one trough.
Abstract:
A cooling circuit for a gas turbine engine comprises a gas turbine engine component having a first portion connected to a second portion via a curved surface. An inlet is formed in or near one of the first and second portions to receive a cooling air flow. An outlet is formed in or near the other of the first and second portions to direct cooling flow along a surface of the gas turbine engine component. At least one cooling path extends between the inlet and the outlet and has at least one cooling path portion that conforms in shape to the curved surface. A gas turbine engine and a method of forming a cooling circuit for a gas turbine engine are also disclosed.
Abstract:
An example gas turbine engine component includes an airfoil having a leading edge area, a first circuit to cool a first section of the leading edge area, and a second circuit to cool a second section of the leading edge area. The first circuit separate and distinct from the second circuit within the airfoil.
Abstract:
A method of manufacturing a component that includes providing a core structure, casting a component about the core structure, removing a first portion of the core structure from the cast component, and leaving a second portion of the core structure in the cast component to provide a reduced cross-section in the cast component.
Abstract:
An airfoil according to an exemplary aspect of the present disclosure includes, among other things, a first cooling hole with a first cooling passage arranged at a first angle relative to a chordwise axis and a second cooling hole with a second cooling passage arranged at a second different angle relative to the chordwise axis. A radial projection of the first cooling passage intersects a radial projection of the second cooling passage.
Abstract:
An airfoil for a gas turbine engine includes pressure and suction walls spaced apart from one another and joined at leading and trailing edges to provide an airfoil having an exterior surface that extends in a radial direction to a tip. A camber line at the tip extends from the leading edge to the trailing edge. Pressure and suction side shelves are arranged in the exterior surface on opposing sides of the camber line respectively in the pressure and suction side walls. A plateau is proud of and separates the pressure and suction side shelves. The plateau is arranged along the camber line and extends to the leading edge.
Abstract:
A component according to an exemplary aspect of the present disclosure includes, among other things, a body, a wall extending inside of the body and a plurality of vortex promoting features arranged in a helical pattern along the wall.
Abstract:
A cooling device for a gas turbine engine component comprises a gas turbine engine component having an upstream channel and a downstream channel that define a cooling flow path. A meter feature includes at least one hole to meter flow from the upstream channel to the downstream channel, and has an upstream side and a downstream side. An exit diffuser extends outwardly from the downstream side of the meter feature to control flow in a desired direction into the downstream channel. A gas turbine engine is also disclosed.
Abstract:
A aerodynamic particle separator for an Additive Manufacturing System (AMS) has an air supply device to entrain a mixed powder in an airstream flowing through a housing. Each particle in the mixed powder is imparted with a momentum dependent upon the particle weight and size. Utilizing this momentum characteristic, the heavier particles are capable of crossing streamlines of the airstream at a bend portion of the housing and the lighter particles generally stay within the streamlines. Utilizing this dynamic characteristic, the particles of specific weight ranges are collected through respective offtake holes in the housing and controllably fed to a spreader of the AMS.
Abstract:
A gas turbine engine includes a structure that has walls that provide a cooling passage and a cooling surface. A non-ferrous obstruction is relative to the walls. The obstruction includes a portion spaced from the cooling surface to provide a gap which is configured to receive a cooling fluid.