Abstract:
A virtual-machine-based system provides a mechanism to implement application file I/O operations of protected data by implementing the I/O operations semantics in a shim layer with memory-mapped regions. The semantics of these I/O operations are emulated in a shim layer with memory-mapped regions by using a mapping between a process' address space and a file or shared memory object. Data that is protected from viewing by a guest OS running in a virtual machine may nonetheless be accessed by the process.
Abstract:
Techniques for implicit coscheduling of CPUs to improve corun performance of scheduled contexts are described. One technique minimizes skew by implementing corun migrations, and another technique minimizes skew by implementing a corun bonus mechanism. Skew between schedulable contexts may be calculated based on guest progress, where guest progress represents time spent executing guest operating system and guest application code. A non-linear skew catch-up algorithm is described that adjusts the progress of a context when the progress falls far behind its sibling contexts.
Abstract:
One or more embodiments of the present invention provide a technique for effectively managing virtualized computing systems with an unlimited number of hardware resources. Host systems included in a virtualized computer system are organized into a scalable, peer-to-peer (P2P) network in which host systems arrange themselves into a network overlay to communicate with one another. The network overlay enables the host systems to perform a variety of operations, which include dividing computing resources of the host systems among a plurality of virtual machines (VMs), load balancing VMs across the host systems, and performing an initial placement of a VM in one of the host systems.
Abstract:
A system and related method of operation for migrating the memory of a virtual machine from one NUMA node to another. Once the VM is migrated to a new node, migration of memory pages is performed while giving priority to the most utilized pages, so that access to these pages becomes local as soon as possible. Various heuristics are described to enable different implementations for different situations or scenarios.
Abstract:
Virtualization software establishes multiple execution environments within a virtual machine, wherein software modules executing in one environment cannot access private memory of another environment. A separate set of shadow memory address mappings is maintained for each execution environment. For example, a separate shadow page table may be maintained for each execution environment. The virtualization software ensures that the shadow address mappings for one execution environment do not map to the physical memory pages that contain the private code or data of another execution environment. When execution switches from one execution environment to another, the virtualization software activates the shadow address mappings for the new execution environment. A similar approach, using separate mappings, may also be used to prevent software modules in one execution environment from accessing the private disk space or other secondary storage of another execution environment.
Abstract:
A method and tangible medium embodying code for allocating resource units of an allocatable resource among a plurality of clients in a computer is described. In the method, resource units are initially distributed among the clients by assigning to each of the clients a nominal share of the allocatable resource. For each client, a current allocation of resource units is determined. A metric is evaluated for each client, the metric being a function both of the nominal share and a usage-based factor, the usage-based factor being a function of a measure of resource units that the client is actively using and a measure of resource units that the client is not actively using. A resource unit can be reclaimed from a client when the metric for that client meets a predetermined criterion.