Abstract:
This disclosure presents computational systems and methods that allocate cost of resources of a cluster of server computers used by virtual machines in a virtual data center. In one aspect, a fair unit rate is computed based on the larger of a measured average utilization or an expected utilization of a cluster resource of server computers within a physical data center by virtual machines. The fair unit rate is a cost per unit of resource used over a period of time and is used to compute an allocated cost of the virtual machine usage of the cluster resource.
Abstract:
The disclosure presents methods and systems for determining cost allocation for logical containers run on a data-center infrastructure. In one aspect, for each resource allocated to one or more logical containers, a method calculates a resource allocation value for each of the one or more logical containers, the resource allocation value represents an amount of the resource allocated to the logical container. An allocated container cost is then calculated for each of the one or more logical containers based on the resource allocation value of each logical container. A cost of unused portions of the resource for each of the one or more logical containers is calculated based on the allocated container cost and the resource allocation value associated with each logical container. The resource allocation value, the allocated container cost, and the cost of unused portion of the resource are stored in one or more data-storage devices.
Abstract:
Techniques for performing dynamic cost per unit resource usage in a virtual data center are described. In one example embodiment, an initial unit resource usage price is received for the virtual data center for a first cycle. Further, capital expenditure (CAPEX) and operating expenditure (OPEX) information of the virtual data center of the first cycle is obtained. Furthermore, a target return on investment (ROI) for the virtual data center for a second cycle is received. A unit resource usage price is then computed for the second cycle using the received initial unit resource usage price for the first cycle and the CAPEX and OPEX information of the first cycle. The unit resource usage price is then dynamically calibrated for the second cycle using the computed unit resource usage price and the target ROI.
Abstract:
Methods and systems predict parameters in a dataset of an identified piece of (“information technology”) IT equipment. An automated method identifies datasets IT equipment in a same category of IT equipment as a piece of IT equipment identified as having incomplete dataset information. Each dataset of IT equipment parameters is used to construct generalized linear models of different classes of IT equipment within the category of IT equipment. The class of the identified IT equipment is determined. A predicted equipment parameter of incomplete information of the identified piece of IT equipment is computed using the generalized linear model associated with the class. The predicted equipment parameter can be used to complete the dataset of the identified piece of IT equipment.
Abstract:
Methods and systems assist data center customer to plan virtual data center (“VDC”) configurations, create purchase recommendations to achieve either an expansion or contraction of a VDC, and optimize the data center cost. Methods generate recommendations on lower cost combinations of virtual machine (“VM”) guest OS licenses, server computer hardware and VM software to optimize the costs are generated, generate data center customer plans for additional VMs with Quest OS for a projected period of time, provide recommendations on lower cost combination of guest OS licenses, server hardware, and VM software to optimize the cost. Methods also report any underutilized licensed servers and provide recommendations for cost savings when volume licenses can be replaced by instance based software licenses. Methods may generate VM placement recommendations to data center customers while the customers attempt to manually migrate VMs to different server computers.
Abstract:
Methods and systems predict parameters in a dataset of an identified piece of (“information technology”) IT equipment. An automated method identifies datasets IT equipment in a same category of IT equipment as a piece of IT equipment identified as having incomplete dataset information. Each dataset of IT equipment parameters is used to construct generalized linear models of different classes of IT equipment within the category of IT equipment. The class of the identified IT equipment is determined. A predicted equipment parameter of incomplete information of the identified piece of IT equipment is computed using the generalized linear model associated with the class. The predicted equipment parameter can be used to complete the dataset of the identified piece of IT equipment.
Abstract:
Methods and systems assist data center customer to plan virtual data center (“VDC”) configurations, create purchase recommendations to achieve either an expansion or contraction of a VDC, and optimize the data center cost. Methods generate recommendations on lower cost combinations of virtual machine (“VM”) guest OS licenses, server computer hardware and VM software to optimize the costs are generated, generate data center customer plans for additional VMs with Quest OS for a projected period of time, provide recommendations on lower cost combination of guest OS licenses, server hardware, and VM software to optimize the cost. Methods also report any underutilized licensed servers and provide recommendations for cost savings when volume licenses can be replaced by instance based software licenses. Methods may generate VM placement recommendations to data center customers while the customers attempt to manually migrate VMs to different server computers.
Abstract:
Methods and systems predict parameters in a dataset of an identified piece of (“information technology”) IT equipment. An automated method identifies datasets IT equipment in a same category of IT equipment as a piece of IT equipment identified as having incomplete dataset information. Each dataset of IT equipment parameters are used to construct generalized linear models of different classes of IT equipment within the category of IT equipment. The class of the identified IT equipment is determined. A predicted equipment parameter of incomplete information of the identified piece of IT equipment is computed using the generalized linear model associated with the class. The predicted equipment parameter can be used to complete the dataset of the identified piece of IT equipment.
Abstract:
A method for scheduling computing resources without container migration includes determining a resource availability for one or more hosts, a resource allocation for one or more virtual machines (VMs), and a resource usage for one or more containers. The method further includes calculating a target resource configuration for one or more VMs, wherein calculating a target resource configuration comprises determining an upper limit of resource demand on a VM from one or more containers allocated on the VM, based at least in part on the resource usage. The method also includes removing or adding resources to each of the one or more VMs for which a target resource configuration was calculated to achieve the target resource configuration for each VM. The method further includes allocating the one or more VMs on the one or more hosts based on the resource availability of the one or more hosts.
Abstract:
The present disclosure describes methods and systems that monitor the utilization of computational resources. In one implementation, a system periodically measures the utilization of computational resources, determines an amount of computational-resource wastage, identifies the source of the wastage, and generates recommendations that reduce or eliminate the wastage. In some implementations, recommendations are generated based on a cost of the computational-resource wastage. The cost of computational-resource wastage can be determined from factors that include the cost of providing a computational resource, an amount of available computational resources, and the amount of actual computational-resource usage. Methods of presenting and modeling computational-resource usage and methods that associate an economic cost with resource wastage are presented.