摘要:
An apparatus and a method for interference cancellation in a transmitting end of a multi-antenna system are provided. A precode is generated which maximizes a diversity gain of one or more receive antennas using channel information of the receive antennas to be serviced. Transmit powers of the receive antennas are updated by taking into account a power loss and a shaping loss according to a dirty paper coding. Transmit signals are precoded by updating the precode according to the updated transmit powers. The dirty paper coding is performed on the precoded transmit signals to be transmitted to the receive antennas.
摘要:
An apparatus and method for generating an effective Signal to Noise Ratio (SNR) per stream in a Multiple Input Multiple Output (MIMO) wireless communication system is disclosed. The apparatus includes a selector, a calculator, a generator, and a decider. The selector selects effective streams among whole streams. The calculator calculates a relative SNR rate between the effective streams. The generator generates an equation having as a solution an SNR of a first effective stream. The decider decides an SNR per effective stream using the solution of the equation and the relative SNR rate.
摘要:
An apparatus and method for removing interference in a transmitting end of a multi-antenna system are provided. The method includes receiving channel information for all Receive (Rx) antennas; calculating a beam-forming matrix that maximizes a Signal-to-Interference plus Noise Ratio (SINR) for each Rx antenna by using the received channel information; calculating an integer value which is in proportion to an interference signal for each Rx antenna by using the received channel information and the calculated beam-forming matrix, and performing Dirty Paper Coding (DPC) on a Transmit (Tx) signal by using the calculated integer value; and performing beam-forming by multiplying the Tx signal that has undergone the DPC by the calculated beam-forming matrix. Accordingly, a highest data rate for each user and a highest diversity can be obtained.
摘要:
Methods and systems for providing joint power control (PC) and scheduling in a wireless network are provided. In one example, a method includes generating a near-optimal power pattern for PC and scheduling in accordance with long term channel statistics. The near-optimal PC solution may be generated by first generating a set of possible power patterns in accordance with likely scheduling scenarios, then statistically narrowing the set of possible power patterns to identify the most commonly used power patterns, and finally selecting one of the most commonly used power patterns as the near-optimal power pattern. In another example, a table of optimal PC solutions are provided for performing distributed PC and scheduling in an adaptive and/or dynamic manner.
摘要:
In an implementation of directed wireless communication, a multi-beam directed signal system coordinates directed wireless communication with client devices. A transmit beam-forming network routes data communication transmissions to the client devices via directed communication beams that are emanated from an antenna assembly, and a receive beam-forming network receives data communication receptions from the client devices via the directed communication beams.
摘要:
A method and apparatus for increasing the data rate and providing antenna diversity using multiple transmit antennas is disclosed. A set of bits of a digital signal are used to generate a codeword. Codewords are provided according to a channel code. Delay elements may be provided in antenna output channels, or with suitable code construction delay may be omitted. n signals represent n symbols of a codeword are transmitted with n different transmit antennas. At the receiver MLSE or other decoding is used to decode the noisy received sequence. The parallel transmission and channel coding enables an increase the data rate over previous techniques, and recovery even under fading conditions. The channel coding may be concatenated with error correction codes under appropriate conditions.
摘要:
A simple block coding arrangement is created with symbols transmitted over a plurality of transmit channels, in connection with coding that comprises only simple arithmetic operations, such as negation and conjugation. The diversity created by the transmitter utilizes space diversity and either time or frequency diversity. Space diversity is effected by redundantly transmitting over a plurality of antennas, time diversity is effected by redundantly transmitting at different times, and frequency diversity is effected by redundantly transmitting at different frequencies:
摘要:
Soft decision decoding of a codeword of a Reed-Muller (RM) code by selecting an optimal decomposition variable i using a likelihood calculation. A code RM(r, m) is expressed as {(u, uv)|uεRM(r, m−1) and vεRM(r−1, m−1)}, where uv denotes a component-wise multiplication of u and v, and (u, uv)=(r1, r2). A receive codeword is separated into r1=u and r2=uv based on the optimal decomposition variable, and r2 is decoded according to the optimal decomposition variable, using a RM(r−1, m−1) decoder to obtain a decoded v and a first set of decoded bits. The decoded v is combined with r1 using (r1+r2v)/2, and (r1+r2v)/2 is decoded using a RM(r, m−1) decoder to obtain a decoded u and a second set of decoded bits.
摘要:
Improved methods and apparatuses are provided to address a potential “hidden beam problem” in wireless communication systems employing smart antennas. The improved methods and apparatuses utilize complementary beamforming (CBF) techniques, such as, for example, Subspace Complementary Beamforming (SCBF), Complementary Superposition Beamforming (CSBF) and/or Single Beam Complementary Beamforming (SBCBF) techniques.
摘要:
Frequencies are allocated in a wireless network, wherein the network includes a set of macrocells and a set of femtocells, and wherein each macrocell includes a base station (BS) and each femtocell includes a femtocell base station. A frequency spectrum is assigned to the network. The frequency spectrum is partitioned into bands of frequencies. The bands of frequencies are allocated to the set of BS for communicating with user equipments (UE) in the set of macro cells, and guard bands of frequencies, within which no data are transmitted between the UE and the macro cell BS. The guard bands are assigned to the set of femtocell base station for communicating with UE in the set of femtocells.