Abstract:
A magnetic valve used for fluid control includes a valve housing, having a magnetic coil surrounding a core, and an armature, which is joined to a valve closing element which cooperates with a fixed valve seat. An end on which a collar is embodied, the valve closing element protrudes into an interior of a spring housing, which is slidably disposed counter to the force of a counterspring. A first bent end of an angle element is supported on a cover of the spring housing, while a second bent end grips the collar from behind and protrudes through a bottom opening of the spring housing. In the open position of the valve closing element, the second bent end is spaced apart from the collar by a distance a. In the valve closing element there is a compensation bore leading to the interior of the spring housing. After actuation of the magnetic coil, the armature displaces the valve closing element toward the valve seat counter to the force of the restoring spring. Only with a delay does a fluid pressure build up in the interior which displaces the spring housing toward the housing stop, thereby stressing a supplementary spring. When the magnetic coil excitation is interrupted, the forces of the restoring spring and of the supplementary spring act in common in the opening direction of the valve closing element, thereby effecting a rapid opening.
Abstract:
An apparatus for removing solid particles from internal combustion engine exhaust gases is proposed, in which the flow of exhaust gas travels at a high speed of more than 2.5 m/sec through an elongated tube (4), in which a corona discharge takes place from a coaxial spray disk/electrode arrangement toward the wall of the tube. Inside the tube, the soot particles are agglomerated to form larger particles, which are not deposited on the walls because of the high flow speed, which then carries them to a centrifugal precipitator, leading away from which are a tube carrying scrubbed exhaust gas and an outlet having a small quantity of exhaust gas highly enriched with soot. This soot-enriched flow of exhaust gas can advantageously be recirculated to the intake side of the associated engine for afterburning.
Abstract:
To remove solid particles such as soot, aerosols, and the like, from the exhaust gas of an internal combustion (IC) engine, for example a Diesel engine, the solid particles and aerosols are first charged in an electrostatic field which is generated between a solid surface (2), preferably cylindrical, and pointed discharge elements, typically electrostatic spray disks (3). The solid particles will adhere together, and to the surface, to form--with respect to the original dust and soot particles and aerosols, large area flakes and agglomerates which are carried along by the gas flow, and are then separated out in a mechanical separator (7, 15, ).