Abstract:
An image sensor that output a signal for detecting a focus state of a photographing lens. The image sensor includes a microlens; a light-receiving pixel; a first focus state detection pixel pair for outputting a focus state detection signal, in which aperture areas of the first focus state detection pixel pair are small in comparison to the light-receiving pixel; and a second focus state detection pixel pair for outputting a focus state detection signal, in which aperture areas of the second focus state detection pixel pair are small in comparison to the light-receiving pixel, wherein the second focus state detection pixel pair is arranged at a position that is shifted by a predetermined amount relative to each aperture position, with respect to the microlens of the first focus state detection pixel pair.
Abstract:
A human antibody that has a specific reactivity with multiple tumor cell lines including ATL cells and possesses both safety and therapeutic efficacy and a fragment of said antibody are provided. A human antibody and a fragment of said antibody that may recognize HLA-DR β chain expressed on the surface of tumor cells were obtained. In particular, it was found that a dimer of scFv (diabody) of said antibody may induce potent apoptosis in cells expressing the HLA-DR β chain. The antibody and a fragment of said antibody obtained in accordance with the present invention are useful for a detection reagent, a diagnostic and a medicament for protection or treatment of cancers including ATL and/or viral infectious diseases.
Abstract:
The present invention provides a novel linker compound which minimizes any nonspecific hydrophobic interactions and is capable of easily adjusting the length to a disulfide group subjected to metal bond to thereby enable effective formation of a metal-sulfur bond; novel ligand conjugate and ligand carrier, and a process for producing them. The linker compound is of a structure represented by the following general formula (1) where a, b, d, e are independently an integer of 0 to 6. X has a structure serving as a multi-branched structure moiety including three or more hydrocarbon derivative chains, wherein the hydrocarbon derivative chains each include an aromatic amino group at an end thereof, and may or may not include a carbon-nitrogen bond in a main chain thereof. The ligand conjugate includes the linker compound having a sugar molecule introduced therein.
Abstract:
An image taking apparatus which can perform a focusing operation quickly is described. The image taking apparatus comprises a light splitting unit which splits a light flux from the image-taking lens into a plurality of light fluxes, a view finder optical system for observing an object image formed by the light flux from the image-taking lens, an image pickup element which photoelectrically converts the object image to an electric signal and a focus detection unit for detecting the focusing state of the image-taking lens according to a phase difference detection system. Here, the light splitting unit changes between a first state in which the light flux is directed to the view finder optical system and the focus detection unit and a second state in which the light flux is directed to the image pickup element and the focus detection unit.
Abstract:
An image taking apparatus performs a focusing operation quickly and includes a light splitting unit which splits a light flux from an image-taking lens into a plurality of light fluxes, a view finder optical system observing an object image formed by the light flux from the lens, an image pickup element which photoelectrically converts the object image to an electrical signal and a focus detector detecting the focusing state of the lens according to a phase difference detector. Here, the light splitting unit changes between a first state for directing the light flux to the view finder optical system and the focus detector, a second state for directing the light flux to the image pickup element and the focus detector, and a third state in which the light flux is directed only to the image pickup element.
Abstract:
A semiconductor device formed by cutting a first substrate and a second substrate bonded together by a spacer, wherein: the spacer is disposed at an end of the first substrate after cutting; the second substrate is a semiconductor wafer formed with a light reception element or elements; and the first substrate has an optical element or an optical element set for converging light on the light reception element or elements. A method of manufacturing such a semiconductor device. A semiconductor device manufacture method includes: a step of detecting a warp of a semiconductor substrate; a step of holding the semiconductor substrate on a base under a condition that the warp is removed; a step of bonding an opposing substrate to the semiconductor substrate; and a step of cutting the opposing substrate, wherein the opposing substrate bonded to the semiconductor substrate is set with a size corresponding to the warp of the semiconductor substrate or with a gap to an adjacent opposing substrate.
Abstract:
An image pickup apparatus is provided having first and second image pickup portions for receiving at least first and second distinct wavelength components of object light, respectively, and first and second optical systems for guiding the first and second wavelength components to the first and second image pickup portions, respectively, via different optical paths. The first and second optical systems are formed to have respective shapes so that the focal length of the first optical system with regard to the first wavelength component is equal to the focal length of the second optical system with regard to the second wavelength component. When a virtual object distance, as defined as set forth herein, an interval between optical axes of the first and second optical systems is set such that a change in an interval between object images of the first and second wavelength components received by the first and second image pickup portions, respectively, between when an object exists at the virtual object distance and when it exists at infinity is smaller than a pixel pitch of the image pickup portions multiplied by two.
Abstract:
A focus detecting device having a light distribution forming device for forming the light intensity distribution whose relative position varies in accordance with the focus adjustment of an object lens from the light flux passing through the object lens, a sensing device for receiving the light intensity distribution and outputting a signal representing the state of focus adjustment of the object lens based on the relative position in the light intensity distribution, and having a plurality of sensing elements, and a light diffusing device disposed in or near a predetermined imaging plane of the object lens, and having the degree of light diffusion determined so that the light intensity distribution can be moved relatively in accordance with the adjustment of the object lens.
Abstract:
An optical apparatus detects a visual point of an observer, and reduces the visual axis detection error due to anatomical differences between people, such as the difference in the size of the eye. The apparatus sequentially displays a plurality of marks in a finder, and can calculate a precise visual point position on the basis of errors between the calculated visual point position and the marks when the observer sequentially watches these marks.
Abstract:
An apparatus for detecting the visual axis of an observer in accordance with light reflected by a photo-sensor by illuminating an eye of the observer includes a controller means for controlling the accumulation time of the photo-sensor or a quantity of light emitted by a light projector so that the reflected light is sufficient to permit the detection of the visual axis.