Abstract:
Systems and methods convey the blood through a gap defined between an inner surface that is located about an axis and an outer surface that is concentric with the inner surface. At least one of the inner and outer surfaces carries a membrane that consists essentially of either a hemofiltration membrane or a hemodialysis membrane. The systems and methods cause relative movement between the inner and outer surfaces about the axis at a selected surface velocity, taking into account the size of the gap. The relative movement of the two surfaces creates movement of the blood within the gap, which creates vortical flow conditions that induce transport of cellular blood components from the membrane while plasma water and waste material are transported to the membrane for transport across the membrane. Shear-enhanced transport of waste materials and blood plasma water results.
Abstract:
Automated systems and methods for withdrawing a selected compound from blood are disclosed. The systems and methods utilize a disposable fluid circuit mounted on a re-usable hardware component or module. The system withdraws blood from a donor or patient, separates the blood into two or more components and further combines the separated component with a solvent so as to remove a compound from the blood component.
Abstract:
Blood processing systems and methods employ two sensors, one to detect a condition of plasma exiting a separation device and another sensor to detect a condition of a cellular component exiting the separation device. The first sensor detects, e.g., contamination of the plasma due to presence of unwanted cellular components. The second sensor detects, e.g., dilution of the cellular component due to presence of plasma. Blood processing parameters are carried out based, at least in part, by conditions detected by one or both of the sensors.