Abstract:
A polarizer adapted to improve contrast and visibility of a display device, a method of manufacturing the polarizer, and a flat panel display device including the polarizer. In one embodiment, the polarizer includes a base and a plurality of grids disposed in a stripe pattern on the base. Here, the grids are separated from each other and formed of metal-containing graphite.
Abstract:
An OLED display includes: a substrate; an organic light emitting element formed on the substrate and including a first electrode, an emission layer, and a second electrode; and an encapsulation layer formed on the substrate while covering the organic light emitting element. The encapsulation layer includes an organic layer and an inorganic layer, and a protrusion and depression structure is formed in an interface between the organic layer and the inorganic layer.
Abstract:
An organic light emitting diode (OLED) display a includes: a substrate; an organic light emitting element on the substrate and including a first electrode, a light emission layer, and a second electrode; and an encapsulation layer on the substrate while covering the organic light emitting element. The encapsulation layer includes an organic layer and an inorganic layer. A mixed area, where organic materials forming the organic layer and inorganic materials forming the inorganic layer co-exist along a plane direction of the encapsulation layer, is formed at the boundary between the organic layer and the inorganic layer.
Abstract:
Provided is an organic light emitting device including an anode, a cathode, and a light emitting layer disposed between the anode and the cathode, wherein the cathode has a structure including a first metal layer and a second metal layer, or a structure including a first metal layer, a second metal layer, and one selected from the group consisting of an oxide layer, a nitride layer, and a nitric oxide layer, and wherein the cathode has low resistance.
Abstract:
An organic light emitting diode device including a first electrode; a second electrode facing the first electrode; and an emitting layer interposed between the first electrode and the second electrode, wherein the first electrode includes an ytterbium (Yb) alloy represented by the following Chemical Formula 1: Yb-M (1), and in Chemical Formula 1, M is a metal including at least one of silver (Ag), calcium (Ca), chromium (Cr), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), molybdenum (Mo), ruthenium (Ru), indium (In), and tungsten (W).
Abstract:
An electrode including metal oxides and a plurality of 12CaO.7Al2O3 particles, a method of preparing the electrode, an electronic device including the electrode, and, in particular, an organic light emitting device including the electrode. The electrode has low resistance, high optical transmittance, and a low work function.
Abstract:
An organic light emitting display device including: a substrate; a sealing member; an organic light emitting device between the substrate and the sealing member and for displaying images; a selective light absorbing layer on a surface of the sealing member facing the organic light emitting device and including pigments for selectively absorbing light; and a black matrix layer on the selective light absorbing layer corresponding to non-emission areas of the organic light emitting device.
Abstract:
An organic light emitting display apparatus that has high (or improved) contrast and/or impact resistance. The organic light emitting display apparatus includes: a substrate; an organic light emitting device on the substrate to display an image; a sealing member on the organic light emitting device; a semitransparent film on a surface of the sealing member facing away from the organic light emitting device to transmit a portion of external light and to reflect another portion of the external light; a passivation film on the semitransparent film to protect the semitransparent film; and a transmissive black layer between the sealing member and the organic light emitting device to increase contrast, wherein the semitransparent film has a refractive index greater than that of the passivation film.
Abstract:
An organic light emitting diode (OLED) including: a substrate; a reflection layer on the substrate and including metal; a first electrode on the reflection layer and including a light transparent aluminum zinc oxide (AZO); an organic layer on the first electrode and including an emitting layer; and a second electrode on the organic layer and including a semi-permeable reflection layer.
Abstract:
A flat panel display apparatus that can reduce or prevent reflection of external light by the flat panel display apparatus. The flat panel display apparatus includes a substrate, a porous layer disposed on the substrate, and a plurality of display devices disposed on the substrate. Here, the porous layer is adapted to diffusedly reflect external light and/or to increase viewing angle of the flat panel display apparatus.