Abstract:
A multi-level electrical fuse system comprises at least one fuse box having at least one electrical fuse, a programming device serially coupled to the electrical fuse, and a variable power supply coupled to the fuse box and configured to generate two or more voltage levels.
Abstract:
A system and method for writing a SRAM cell coupled to complimentary first and second bit-lines (BLs) is disclosed, the method comprising asserting a word-line (WL) selecting the SRAM cell to a first positive voltage, providing a second positive voltage at the first BL, providing a first negative voltage at the second BL, and asserting a plurality of WLs not selecting the SRAM cell to a second negative voltage, wherein the writing margin of the SRAM cell is increased.
Abstract:
An integrated circuit for programming an electrical fuse includes a first programming device coupled to the electrical fuse for selectively providing the same with a first programming current, and a second programming device coupled to the electrical fuse for selectively providing the same with a second programming current. A detection module is coupled to the electrical fuse for generating an output indicating a resistance level of the electrical fuse, wherein the resistance level has three or more predetermined states, which are provided by selectively programming the electrical fuse with the first or second programming current.
Abstract:
A multi-level electrical fuse system comprises at least one fuse box having at least one electrical fuse, a programming device serially coupled to the electrical fuse, and a variable power supply coupled to the fuse box and configured to generate two or more voltage levels.
Abstract:
A writing dynamic power control circuit is disclosed, which comprises a BL and its complementary BLB, at least one memory cell coupled to both the BL and BLB, a first NMOS transistor having a source, a drain and a gate coupled to the BL, the Vss and a first data signal, respectively, a second NMOS transistor having a source, a drain and a gate coupled to the BLB, the Vss and a second data signal, respectively, wherein the second data signal is complementary to the first data signal, a first PMOS transistor having a source, a drain and a gate coupled to a high voltage power supply (CVDD) node, the BLB and the BL, respectively, and a second PMOS transistor having a source, a drain and a gate coupled to the CVDD node, the BL and the BLB, respectively.
Abstract:
A manufacturing method of a filter is provided. The manufacturing method includes steps as follows. First, a substrate is provided and a black matrix is formed on the substrate. The black matrix has a number of openings arranged in array. Next, a filter material is individually formed in the openings by inkjet printing or other methods, and the filter material includes a solvent and a dye mixed with the solvent. Thereafter, a thermal treatment is performed and an evaporation rate of the solvent during the thermal treatment is reduced, so as to cure the filter material. As the evaporation rate of the solvent is relatively slow, the filter material is still flowable during the thermal treatment. Hence, the cured filter material has a flat surface. The filter fabricated by the above manufacturing method has an even hue and a well flattened surface.
Abstract:
A manufacturing method of a color filter including following steps is provided. First, a partition is formed on a substrate to form a plurality of pixel regions on the substrate. Next, a color pigment is provided along a continuous pigment-providing route, so as to form the color pigment on a sequence of pixel regions among the plurality of pixel regions and the partition. The method mentioned above can prevent the unfilled phenomenon of the pigment around the corners of the pixel region. Besides, a liquid crystal display panel having the color filter is also provided.
Abstract:
A power control circuit for an integrated circuit module includes at least one switch device coupled between a supply voltage and a power node of the integrated circuit module; and a switch control module having a first terminal coupled to the switch device, a second terminal coupled to a control signal, a third terminal coupled to a first storage node of at least one tracking cell, a fourth terminal coupled to a second storage node of the tracking cell, and a fifth terminal coupled to the power node of the integrated circuit module, for controlling the switch device to pass the supply voltage to the power node with or without a substantial voltage drop depending on an operation mode of the integrated circuit module.
Abstract:
A system for generating a pulse signal in response to a clock signal includes a latch module for generating a latched output in response to a leading edge of the clock signal. A delay module is coupled to the latch module for delaying the latched output. A first logic device having a first input terminal coupled to the latch module and a second input terminal is coupled to the delay module for generating the pulse signal, which has a pulse width determined by a delay time of the latched output passing through the delay module. The pulse signal is coupled to the latch module for resetting the latch module when the pulse signal is not asserted.
Abstract:
A system for generating a pulse signal in response to a clock signal includes a latch module for generating a latched output in response to a leading edge of the clock signal. A delay module is coupled to the latch module for delaying the latched output. A first logic device having a first input terminal coupled to the latch module and a second input terminal is coupled to the delay module for generating the pulse signal, which has a pulse width determined by a delay time of the latched output passing through the delay module. The pulse signal is coupled to the latch module for resetting the latch module when the pulse signal is not asserted.