Abstract:
A power supply case having a waterproof structure includes an upper case and a lower case, a waterproof structure is formed by a waterproof groove and a waterproof rib. After the upper case and the lower case are engaged, an engaged status is formed by the waterproof rib and the waterproof groove, and the power supply case is formed with at least an open zone penetrated in the area where the waterproof structure is formed, and characterized in that: a surface of the open zone defined in the waterproof groove is inwardly formed with an extended groove part which is communicated with the waterproof groove. The waterproof structure is able to be matched with a waterproof strip, and the length of the waterproof strip is able to be longer than the length of the waterproof groove.
Abstract:
A power supply structure includes a main body and a plug. The main body has a circular containing space, a cylinder and a plurality of conducting plates. The cylinder has a retaining plane and at least one annular groove. The plug has a plug seat and a first cylinder. The first cylinder has a protrusion and at least one elastic device on an inner side of the bottom of the first cylinder. The elastic device has a resilient arm and a pressing member. The annular groove has a stop block and a fixing space. The protrusion is provided and placed into the annular groove, so that the plug can be fixed into the main body.
Abstract:
A conversion apparatus with overload control includes a primary conversion circuit, a resonant conversion circuit, and a control unit. The control unit controls a voltage value of a DC power source outputted from the primary conversion circuit according to a current signal of an output current of the resonant conversion circuit. When the control unit realizes that the output current exceeds a rated current according to the current signal, the control unit steps up the voltage value of the DC power source.
Abstract:
A dual-mode active clamp flyback converter includes a transformer circuit, a clamping energy storage circuit, and a main switch circuit. The transformer circuit is coupled to a load, and the transformer circuit includes an auxiliary winding. The clamping energy storage circuit is coupled to the transformer circuit. If the load as a heavy loading, the clamping energy storage circuit is turned on. If the load as a light loading, the clamping energy storage circuit is turned off. The main switch circuit is coupled to the transformer circuit. When the main switch circuit is turned on, the auxiliary winding releases energy to a primary-side winding of the transformer circuit.
Abstract:
A flicker-free LED driving apparatus and voltage regulating method thereof are disclosed. The apparatus includes a power conversion circuit receiving an AC electricity and then generating an output voltage with a ripple component for an LED string; a feedback circuit electrically connected to the power conversion circuit and generating a feedback signal with varying duty cycle according to operation states of the LED string; a power conversion circuit including, a controller receiving the feedback signal turns on or off a switching device thereof according to the feedback signal; and a linear voltage-regulating circuit electrically connected to the power conversion circuit, the feedback circuit, and the LED string. and configured to regulate the output voltage in accordance with a voltage difference between the output voltage and a voltage across the LED string.
Abstract:
An electronic device is provided. The electronic device integrates an enable function and an over-temperature protection function (OTP) on the same line, thereby reducing the PCB layout between a microcontroller and a mainboard circuit, and further reducing the circuit complexity and cost. In addition, the negative temperature coefficient (NTC) thermistor in the electronic device is also directly coupled to a circuit pin used for the enable function of the microcontroller to serve as an over-temperature protection application. Therefore, even if the microcontroller fails, the electronic device may still use the hardware circuit structure to automatically achieve the over-temperature protection function.
Abstract:
A passive coupled-inductor soft-switching circuit of a power factor corrector is provided. The passive coupled-inductor soft-switching circuit includes a power input terminal, a first inductor, a first diode, a power output terminal, a power switch and a buffer circuit. The first inductor has a first terminal and a second terminal, wherein the first terminal of the first inductor is electrically coupled with the power input terminal. The first diode has a positive terminal and a negative terminal, wherein the positive terminal of the first diode is electrically coupled with the second terminal of the first inductor. The power output terminal is electrically coupled with the negative terminal of the first diode. The buffer circuit is electrically coupled with the power switch. By using the buffer circuit, the voltage and current have phase interlacing shifts and thereby reducing the switching loss.
Abstract:
A passive coupled-inductor soft-switching circuit of a power factor corrector is provided. The passive coupled-inductor soft-switching circuit includes a power input terminal, a first inductor, a first diode, a power output terminal, a power switch and a buffer circuit. The first inductor has a first terminal and a second terminal, wherein the first terminal of the first inductor is electrically coupled with the power input terminal. The first diode has a positive terminal and a negative terminal, wherein the positive terminal of the first diode is electrically coupled with the second terminal of the first inductor. The power output terminal is electrically coupled with the negative terminal of the first diode. The buffer circuit is electrically coupled with the power switch. By using the buffer circuit, the voltage and current have phase interlacing shifts and thereby reducing the switching loss.
Abstract:
A control circuit module for a power factor corrector is provided to convert the operation mode of the inductor current from the boundary conduction mode (BCM) to the discontinuous conduction mode (DCM) when a transistor element is operated under the valley inductor current, thus reducing the switching frequency and increasing system efficiency, also to maintain the operation mode of the inductor current in the BCM when the transistor element is operated under the peak inductor current, thus maintaining system efficiency.