Abstract:
A power tool transmission device includes a base, a switch portion, a vibration member, a press portion, a transmission shaft and a casing. When the projections press the position plates, bosses on the position plates engage ribs formed outside the outer ring so as to limit the rotation of the outer ring and when the first gear and the second gear are intermittently disengaged with each other, a vibration effect is provided to the transmission shaft.
Abstract:
A power tool transmission device includes a base, a switch portion, a vibration member, a press portion, a transmission shaft and a casing. When the projections press the position plates, bosses on the position plates engage ribs formed outside the outer ring so as to limit the rotation of the outer ring and when the first gear and the second gear are intermittently disengaged with each other, a vibration effect is provided to the transmission shaft.
Abstract:
Method for the open-loop and closed-loop control of a power tool, in particular a chipping hammer, having a drive, a control device, a sensor device, a transmission device and a handle apparatus, wherein the handle apparatus contains a lever element with a signal transmitter, said lever element being pivotable relative to the sensor device. The method includes: sensing a first and second position of the signal transmitter by the sensor device; determining an acceleration of the signal transmitter from the first position to the second position by the control device; setting a first rotational speed for the drive by the control device for the output of a first impact energy value of the transmission device when the determined acceleration reaches a first predetermined threshold value or setting a second rotational speed for the drive by the control device for the output of a second impact energy value of the transmission device when the determined acceleration reaches a second predetermined threshold value. A handle apparatus on a power tool, in particular a chipping hammer, is also provided.
Abstract:
A percussion tool includes a housing, a percussion mechanism including a striker supported for reciprocation in the housing along a first axis, and an anti-vibration system for attenuating vibration in a direction of the first axis. The anti-vibration system includes a linkage coupling the percussion mechanism to the housing. The linkage permits relative movement between the housing and the percussion mechanism along the first axis. The anti-vibration system also includes a counterweight supported by the percussion mechanism for relative movement therewith along a second axis that is parallel with the first axis. The counterweight reciprocates out of phase with the striker to attenuate vibration in the direction of the first axis.
Abstract:
A percussion tool comprises a housing and an electric motor positioned within the housing. The percussion tool further comprises a battery pack supported by the housing for providing power to the motor. The battery pack includes a plurality of battery cells having a nominal voltage of up to 120 Volts. The percussion tool further comprises a percussion mechanism driven by the motor and including a striker supported for reciprocation in the housing. The percussion tool has a ratio of impact energy to mass that is greater than or equal to 2.5 Joules/kilogram.
Abstract:
Percussion unit, especially for a rotary hammer and/or percussion hammer, comprising a control unit which is designed for open-loop and/or closed loop control of a pneumatic percussion mechanism, and at least one operating condition sensor unit. According to the disclosure, the control unit is designed to detect at least one percussion mechanism parameter depending on measurement values of the operating condition sensor unit.
Abstract:
A hammer drill (100) comprises an electric motor (110), a piston (127) as a driving member and a controller (199) which controls and drives the electric motor (110). The piston (127) is reciprocated by rotation of the electric motor (110) and thereby a hammer bit (119) is driven in its longitudinal direction. The hammer bit (119) is moved forward in response to a forward movement stroke of the piston (127) and thereby a hammering operation is performed by the hammer bit (119). The controller (199) sets a duty ratio of a driving pulse signal which drives the electric motor (110) in the forward movement stroke of the piston (127) to be larger in order to prevent a reduction of a rotation speed of the electric motor (110) due to a load applied on the electric motor (110) during the forward movement stroke of the piston (127).
Abstract:
A drill includes a housing with a motor coupled to an output spindle via a transmission. A mode collar can be rotatably mounted on the housing for movement that corresponds to different modes of operation. The mode collar can be coupled to an electronic switch to operate a movable member thereof. The coupling can include a switch housing including a slide member, an actuation spring member and a return spring member. The mode collar can have a cam surface and a cam follower in the form of a shift pin that moves the slide member, causing actuation of the switch. The actuation spring member provides a biasing force that is sufficient to overcome a biasing force of a switch spring member to move the movable member into the actuated position. The mode collar can also enable and disable contact between a fixed hammer member and a movable hammer member mounted around the output spindle.
Abstract:
A drill includes a housing with a motor coupled to an output spindle via a transmission. A mode collar can be rotatably mounted on the housing for movement that corresponds to different modes of operation. The mode collar can be coupled to an electronic switch to operate a movable member thereof. The coupling can include a switch housing including a slide member, an actuation spring member and a return spring member. The mode collar can have a cam surface and a cam follower in the form of a shift pin that moves the slide member, causing actuation of the switch. The actuation spring member provides a biasing force that is sufficient to overcome a biasing force of a switch spring member to move the movable member into the actuated position. The mode collar can also enable and disable contact between a fixed hammer member and a movable hammer member mounted around the output spindle.
Abstract:
A percussion mechanism for a repetitively hammering hand power tool in the form of a rotary hammer has a striker movable axially forward and backward in a guide barrel and imparting impacts directly and without any intermediate parts to an end section of a tool bit that is insertable into the hand power tool, a device that exerts pressure on the striker, by which the striker is capable of being set into a forward motion in the direction of the tool bit, a blocking element, with which the striker is blockable in its forward motion, and the striking frequency of the striker is adjustable by controlling the blocking time of the blocking element, so that the striking frequency of the striker depends on how long the blocking element blocks the forward motion of the striker.