Abstract:
A container transport system includes a first conveyor assembly at one transport plane, and a second conveyor assembly at another transport plane, and a transfer device for moving the containers between the conveyor assemblies. Each of the conveyor assemblies has a split conveyor to define a gap, and a further conveyor movable between a first position bridging the gap and a second position in which the further conveyor is moved outwardly transversely to the transport direction. The transfer device includes a convex portion disposed in proximity of one transport plane and a concave portion which can swing into the other transport plane. The container has a bottom underside formed in transport direction with at least one grooved recess which defines a leading edge and a trailing edge, as viewed in transport direction, with the convex and concave portions engaging only the leading and trailing edges of the container, as the container is moved between the transport planes.
Abstract:
An novel apparatus and technique may be used to induct articles onto a conveyor comprising at least one conveyor belt that moves articles along a first path that extends in a first direction. The apparatus may be used to move an article along a second path that extends in a second direction, which is transverse to the first direction, to a first position above but not in contact with the at least one conveyor belt. After the article has been moved to the first position above but not in contact with the at least one conveyor belt, the apparatus may be used to move the article onto the at least one conveyor belt.
Abstract:
An novel apparatus and technique may be used to induct articles onto a conveyor comprising at least one conveyor belt that moves articles along a first path that extends in a first direction. The apparatus may be used to move an article along a second path that extends in a second direction, which is transverse to the first direction, to a first position above but not in contact with the at least one conveyor belt. After the article has been moved to the first position above but not in contact with the at least one conveyor belt, the apparatus may be used to move the article onto the at least one conveyor belt.
Abstract:
A container transport system includes a first conveyor assembly at one transport plane, and a second conveyor assembly at another transport plane, and a transfer device for moving the containers between the conveyor assemblies. Each of the conveyor assemblies has a split conveyor to define a gap, and a further conveyor movable between a first position bridging the gap and a second position in which the further conveyor is moved outwardly transversely to the transport direction. The transfer device includes a convex portion disposed in proximity of one transport plane and a concave portion which can swing into the other transport plane. The container has a bottom underside formed in transport direction with at least one grooved recess which defines a leading edge and a trailing edge, as viewed in transport direction, with the convex and concave portions engaging only the leading and trailing edges of the container, as the container is moved between the transport planes.
Abstract:
A transport system, in particular airport baggage handling system, for transport of containers with articles, in particular bags, includes a discharge unit for unloading a container which supports an article and defines a longitudinal axis. The discharge unit includes a curve section to define a curved transport path, and an engagement assembly for guiding and moving the container at a desired speed. The engagement assembly is constructed to move the container along the curved transport path at a transport speed by which the article is forced outwards as a result of centrifugal forces so that the article spontaneously slides from the container.
Abstract:
A transport system, in particular an airport baggage handling system, includes a container for receiving an article, a sensor assembly including an inductive sensor for monitoring a transport of the container along a transport path, and a screening device for completely scanning the article within the container together with the container. The container is provided with a marking in the form of a doped zone or a metal element so attached to the container body as to pass the sensor assembly in its response range for detection of the container. The container body is hereby constructed to allow scanning of the article together with the container body.
Abstract:
A device for automatic detection of whether an item is correctly routed is provided, the item including at least one radio frequency tag, wherein the device includes an RF communication mechanism for receiving at least one reading from the RF tag, the device being adapted to be arranged at a read point in proximity of the conveying mechanism, which conveying mechanism is operable to transport the item towards a destination, wherein the device is configured to extract identification and/or destination information from the reading received from the item on the conveying mechanism crossing past the device and to verify whether the item is correctly routed. Also, provided is a method for automatic detection of whether an item is correctly routed.
Abstract:
A baggage transfer conveyer unit for mounting over a baggage carousel having a carousel transferring path for transferring a baggage therealong is provided. The conveyor unit comprises a proximal end, a distal end, an upper surface by means of which the baggage is to be transferred from the proximal end to the distal end along a conveyor unit transferring path extending between the ends, a baggage transferring mechanism configured for causing the upper surface to transfer the baggage along the conveyor transferring path; and a baggage diverting mechanism configured for causing a part of the upper surface to divert the baggage from the conveyer unit transferring path along a diverted direction different from that of the conveyor unit transferring path. The baggage transfer conveyer unit is configured to be mounted over the baggage carousel such that the conveyer transferring path is aligned with the carousel transferring path.
Abstract:
A system and method for operating a luggage inspection area. The method includes providing an entrance mechanism wherein luggage items are received into the luggage inspection area. A primary inspection mechanism and a primary checked bag reconciliation area are provided that are configured to inspect a predetermined throughput of luggage items. A primary material handling device is provided that extends between the entrance mechanism, the primary inspection mechanism and the primary checked bag reconciliation area. The occurrence of an upcoming peak event is determined, and in response, a supplemental inspection mechanism, a supplemental checked bag reconciliation area and a first supplemental material handling device are provided. The supplemental components provide increased throughput of luggage items inspected during the occurrence of the peak event and are configured to be portable such that they may be quickly and easily be added and removed.
Abstract:
An overturning system is provided for a conveyor system, in particular an airport baggage conveyor system, which is suitable for transporting goods on a conveyor section. The goods can preferably be transported in the transport direction resting in a stable position on the conveyor section and, as the goods pass the conveyor section, the goods are moved into the stable position with the aid of a goods overturning unit. The goods overturning unit is divided into individual segments. The goods, which are initially in a non-stable position, are overturned into a stable position with the goods overturning unit.