Abstract:
An elevator control system includes one elevator control for each elevator car, one group supervisory device for each floor connected in two ways to the elevator controls, a group supervisory accessory connected to group supervisory devices, and a statistical device connected to the group supervisory devices and also to the group supervisory accessory. The group supervisory accessory calculates a car suspending time interval at each of the forward floors in a direction of travel of the elevator car in accordance with a percentage getting-off or -on from the statistical device by considering car and floor calls and the number of passengers within the elevator car increased due to non-responding floor calls and also a presumed arrival time interval at each floor. The group supervisory devices receive those presumed arrival time intervals to assign the optimum elevator car to the desired floor call through an associated one of the elevator controls.
Abstract:
With this group control the allocation of elevator cabins or cars to existing storey or floor calls should be timewise optimized and newly arriving storey calls should be immediately allocated. A computer device provided for each elevator computates at each landing or storey, irrespective of whether or not there is present a storey or landing call, from the distance between the storey and the cabin position indicated by a selector, the intermediate cabin stops to be expected within this distance and the momentary cabin load a sum proportional to the time losses of waiting passengers. In this way the cabin load prevailing at the computation time point is corrected such that the expected number of passengers entering and exiting the cabin, derived from the previously ascertained number of entering and exiting passengers is taken into account for the future intermediate cabin stops. Such loss time sum, also referred to as the servicing cost, is stored in a cost storage or memory provided for each elevator. During a cost comparison cycle the servicing costs of all elevators are compared with one another by means of a comparator, and in an allocation storage of the elevator with the lowest servicing cost there can be stored an allocation instruction which designates that storey or floor to which there can be optimumly allocated the relevant elevator cabin.
Abstract:
An elevator control system for controlling a plurality of elevator cars arranged for parallel operation for servicing a plurality of service floor landings of a building, in which means are provided so that, in response to origination of a new hall call in addition to hall calls originated and allotted already, a suitable car for servicing this new hall call can be selected and the new hall call can be allotted to the selected car to be serviced by the selected car. In the system, the change in the service condition of all the cars for the already allotted hall calls due to allotment of this new hall call thereto is taken into account in selecting the suitable car. For example, means are provided for computing for each car the forecast waiting time at each of the already allotted floors to be serviced thereby to detect the change in the forecast waiting time when this new hall call originating floor is serviced. The new hall call is allotted to the car which provides a forecast waiting time less than a predetermined limit, and this car services this specific floor.
Abstract:
A method for determining an allocation decision for at least one elevator includes using an existing calls in an elevator system as a first input in a machine learning module, processing the first input with the machine learning module to provide a first output comprising a first allocation decision, using the first output as a second input in an iterative module, processing the second input with the iterative module to provide a second ouput comprising a second allocation decision, and providing the second allocation decision to an elevator control module and to an allocation decision storage for further machine learning module training.
Abstract:
In an approach for determining an optimal path for an elevator, a processor receives information, wherein the information includes social media data associated with a user and calendar entries associated with the user, indicating one or more locations within a building. A processor analyzes the received information. A processor determines a location to send an elevator within the building to minimize movement of the elevator, based on the analyzed information. A processor causes the elevator to move to the location.
Abstract:
An elevator control system including an elevator management system obtaining meeting information from at least one of a calendar system and a user interface; the elevator management system generating a control command in response to the meeting information; and an elevator controller controlling destinations of one or more elevator cars in response to the control command.
Abstract:
A method for the call allocation in an elevator group uses a call allocation unit of an elevator group control. In the call allocation unit, passenger flow data of the elevator group is used to adapt call allocation parameters to improve the performance of the elevator group. The public traffic data is retrieved from at least one public transportation system, and is used to supplement expected passenger flow data for the adaption of call allocation parameters.
Abstract:
The present invention discloses a method for controlling an elevator system. In the method, hints relating to potential elevator passengers are received from at least one observation point connected to the elevator system. Based on the hints, forecasts relating to potential elevator passengers are prepared, on the basis of which forecasts one or more anticipatory control actions are executed.
Abstract:
The invention relates to a method for controlling an elevator installation with at least one shaft and a number of cars, it being possible to make at least two cars travel separately up and down along a common traveling path and a passenger being able to enter a destination call by means of an input unit disposed outside the shaft and the destination call being allocated to a car in dependence on an allocation assessment. To develop the method in such a way that the transporting capacity can be increased, with the cars which can be made to travel along a common traveling path hindering one another as little as possible, it is proposed according to the invention that, in the case of allocation of the destination call to one of the cars which can be made to travel along the common traveling path, the portion of the traveling path required for serving the destination call is assigned to this car and blocked for the time of the assignment for the other cars. Furthermore, an elevator installation for carrying out the method is proposed.
Abstract:
A method schedules cars of an elevator system in a building. The method begins execution whenever a newly arrived passenger presses an up or down button to generate a call for service. For each car, determine a first waiting time for all existing passengers if the car is assigned to service the call, based on future states of the elevator system. For each car, determine a second waiting time of future passengers if the car is assigned to service the call, based on a landing pattern of the cars. For each car, combine the first and second waiting times to produce an adjusted waiting time, The method ends by assigning a particular car having a lowest adjusted waiting time to service the call and minimize an average waiting time of all passengers.