Abstract:
A process for treating colored liquid comprises a step of contacting a colored liquid and functional water generated by electrolysis of a water solution of an electrolyte under light irradiation, to decolorize efficiently and stably to a low chromaticity.
Abstract:
An apparatus for storing and disinfecting a fluid includes a container (12) and a cap member (16) for containing the fluid and a cap member (16). The container (12) defines an opening (14) through which the fluid is dispensed therein and is removed therefrom and has at least two electrical contacts which mate with at least two electrical contacts in the cap member. The cap member (16) removably seals the opening of the container (12). An ultraviolet source (24) is mounted to at least one of the container (12) and the cap member (16). The ultraviolet source (24) emits ultraviolet radiation to disinfect the fluid contained in the container (12). A power source is electrically coupled to the at least two electrical contacts of the container (12).
Abstract:
A UV disinfector with a gravity driven feed water delivery system, and an air-suspended bare UV lamp. The disinfector is hydrodynamically optimized with a laminerizing, perforated baffle wall, beveled treatment chamber, and outlet weir.
Abstract:
A photocatalyst comprising inorganic porous particles having photosemiconductor particles deposited on at least a part of the surfaces and at least a part of the walls of the pores of the particles, and a photocatalyst comprising inorganic porous particles having photosemiconductor particles and microorganisms possessing water purification activity deposited on at least a part of the surfaces and at least a part of the walls of the pores of the particles are disclosed. The photocatalysts have a stable photocatalytic function for an extended period of time and easy separability from the treated water system so that it is useful for various photocatalytic reactions. Particularly they can be effectively used in water purification, and allow annihilation of harmful organisms such as algae, fungi and bacteria, decomposition of deleterious materials, as well as deodorization and decoloration to be conveniently and easily accomplished.
Abstract:
A water purification system for treating grey water from household appliances such as baths, showers, vanity basins and washing machine (11-15) has branch-off pipes (29-33) from the usual drain pipes (17-21) these branch-off pipes lead to a storage tank tank (35). The branched off water is filtered by a screen filter (51) then circulated by a pump (53) in series to a heater (55). The system also includes a sediment filter (57), a carbon filter (59), color filter (61), an ultraviolet radiation unit (63), and hence via a shut-off valve (71), to a storage tank (73). The purified grey water can be used for car-washing, and garden and lawn irrigation. The system can be retrofited to an existing home or installed in a new home.
Abstract:
A portable container providing a means for the sterilization of drinking water by ultraviolet radiation. The container has a bottom housing serving as a reservoir for holding the water and a mating top housing containing the ultraviolet source. Powered by batteries the ultraviolet source provides efficient sterilization throughout the reservoir, the reservoir preferably having ultraviolet reflecting sidewalls.
Abstract:
Various embodiments of photoreactors are disclosed which have at least two irradiation chambers with a window therebetween. Ultraviolet radiation is introduced into one of the chambers at a side opposite the window so that it passes through that chamber, through the window and into the other chamber. The fluid medium to be purified is passed through the chambers and subjected to the radiation while in the chambers. The flow of the medium is through the chambers in series in some embodiments and in parallel in others. An embodiment is disclosed wherein a recirculation line is established around the reactor with the recirculation being continuous or intermittent. When intermittent the purified fluid medium also is drawn off intermittently, between the periods of recirculation. In some embodiments the amount of radiation traversing all the chambers is monitored. If the monitored amount drops below a given amount, the apparatus is shut down. Alternatively, the rate of flow of the medium is adjusted, based on that monitored amount, with the rate of flow increasing or decreasing, respectively, in response to increases or decreases in that amount.
Abstract:
A method and apparatus for continuously purifying a fluid by the emission of ultraviolet rays characterized by a body with a series of spaced, parallel, elongated, cylindrical radiation chambers extending therethrough, and a plurality of elongated, interconnecting chambers having a height substantially less than the diameter of the radiation chambers, a plurality of elongated, ultraviolet ray emitting lamps removably mounted in jackets in the radiation chambers, respectively, and extending from the front to the rear of the radiation chambers. Fluid to be purified is continuously received in an elongated chamber and spread into sheet-like flow attitude and thence passed serially and transversely between the lamp jackets and the walls of the radiation chambers, the walls being in close proximity to the jackets to maintain sheet-like flow for a substantial distance around the periphery of the lamps, and the fluid is maintained in sheet-like flow between adjacent radiation chambers by passing through the interconnecting chambers, and thence the purified liquid is discharged from the last of the radiation chambers.
Abstract:
An apparatus and method are provided wherein a liquid to be irradiated is formed into the shape of an unsupported thin stream; the stream is irradiated from a source of radiation which is disposed in spaced relationship to the liquid stream. The apparatus has numerous utilities such as, for example, disinfecting contaminated liquids by subjecting them to ultraviolet or infra-red radiation. Oxygen can be supplied to the radiation zone of the apparatus in the case of ultra-violet radiation to produce an oxidizing atmosphere of ozone in contact with the liquid. The apparatus possesses numerous advantages over previously described apparatus as discussed in greater detail in the attached specification.
Abstract:
CONTAMINATED WATERS HAVE THEIR OXIDIZABLE IMPURITIES MATERIALLY REDUCED BY OXIDATION WITH A HYPOHALOUS ACID FORMING COMPOUND IN THE PRESENCE OF ACTINIC LIGHT, IRRADIATED FROM A SOURCE MAINTAINED IN CLOSE PROXIMITY TO THE WATER.