摘要:
Proposed is an improvement in the VAD process for the preparation of a porous silica glass preform for double-core optical fibers by using three oxyhydrogen flame burners installed one above the other in a flame hydrolysis chamber in which a porous silica glass body consisting of the center core portion formed by the lowermost burner, side core portion formed by the middle burner and the cladding layer formed by the uppermost burner is gradually pulled up as it grows under rotation. Different from conventional procedures in which the extension of the nozzle axis of each of the burners intersects with the rotation axis of the growing body, the extension of the nozzle axis of the middle burner for the side core is displaced in a horizontal direction by a limited distance not to intersect nor to be in parallel with the rotation axis in the invention. By this means, an improvement is obtained in the uniformity of distribution of the refractive index in the side core which otherwise is remarkably disordered.
摘要:
A rare earth element-doped multiple-core optical fiber has an outer cladding layer and a plurality of cores each covered with a primary cladding layer. The cores are positioned substantially on a central axis of the outer cladding layer and separated with a predetermined spacing S from each other by the primary cladding layer. The outer cladding layers are made of SiO.sub.2, or SiO.sub.2 added with a dopant like F, Ge, etc. The primary cladding layer is made of SiO.sub.2 doped with Er, or SiO.sub.2 doped with Er and F together and formed to have a predetermined thickness of 1.0 .mu.m.about.1.5 .mu.m to form the predetermined spacing S. The Soot glass rods for cores and primary cladding layers are immersed in an Er-compound solution, then picked up, dried and consolidated to form Er--Al co-doped SiO.sub.2 --GeO.sub.2 transparent glass rods. The glass rods are inserted into a quartz tube and collapsed by heat to fabricate an optical fiber preform rod, then heated to be drawn to provide an Er-doped multiple-core optical fiber.
摘要:
A method and apparatus are provided for forming a glass preform which can be directly drawn into a single or multi-mode optical fiber. Single or multi-mode fibers drawn from the preforms described herein have high quality core-clad interfaces since the core and cladding materials are not exposed to crystallization temperatures upon the addition of the core material to cladding material.
摘要:
A multiple optical core fiber and method for manufacturing it. Two or more chemical vapor deposition type preforms are fused with a hydrogen-oxygen torch and then etched in a solution of 50% hydrofluoric and 50% nitric acid. A hollow quartz tube is subjected to internal gas pressure while a hydrogen-oxygen torch is passed along it. This expands and cleans the tube. The chemical vapor deposition preforms are inserted within the expanded tube which is again subjected to the torch to collapse it about the preforms. A nearly solid glass rod with two or more optical waveguide cores is thereby formed. This multiple core preform may then be drawn into a multiple core fiber which can be utilized for the transmission of light pulses.
摘要:
By heat treating a glass member containing at least one kind of cation to constitute a modifying oxide in contact with a source of another kind of cation to cause ion substitution, a lightconducting glass structure can be produced to have a refractive index distribution wherein the index varies progressively transversely to the intended light path, which is thereby bent toward the direction of increase of the index, such a lightconducting glass structure is not accompanied by differences or lagging of phase velocities of conducted light rays, spreading of the light flux width, and reflection losses.
摘要:
This application relates generally to an optical fiber for the delivery of infrared light where the polarization state of the light entering the fiber is preserved upon exiting the fiber and the related methods for making thereof. The optical fiber has a wavelength between about 0.9 μm and 15 μm, comprises at least one infrared-transmitting glass, and has a polarization-maintaining (PM) transverse cross-sectional structure. The infrared-transmitting, polarization-maintaining (IR-PM) optical fiber has a birefringence greater than 10−5 and has applications in dual-use technologies including laser power delivery, sensing and imaging.
摘要:
This application relates generally to an optical fiber for the delivery of infrared light where the polarization state of the light entering the fiber is preserved upon exiting the fiber and the related methods for making thereof. The optical fiber has a wavelength between about 0.9 μm and 15 μm, comprises at least one infrared-transmitting glass, and has a polarization-maintaining (PM) transverse cross-sectional structure. The infrared-transmitting, polarization-maintaining (IR-PM) optical fiber has a birefringence greater than 10−5 and has applications in dual-use technologies including laser power delivery, sensing and imaging.
摘要:
Optical waveguide cores having refractive index profiles that vary angularly about a propagation axis of the core can provide single-mode operation with larger core diameters than conventional waveguides. In one representative embodiment, an optical waveguide comprises a core that extends along a propagation axis and has a refractive index profile that varies angularly about the propagation axis. The optical waveguide can also comprise a cladding disposed about the core and extending along the propagation axis. The refractive index profile of the core can vary angularly along a length of the propagation axis.
摘要:
An integrated optical module is provided. The optical module includes multi optically-coupled channels, and enables the use thereof in an Artificial Neural Network (ANN). According to some embodiments the integrated optical module includes a multi-core optical fiber, wherein the cores are optically coupled.
摘要:
A multicore optical fiber (1) includes a plurality of cores (11 to 16) and a cladding (20) surrounding the outer circumferential surfaces of the cores (11 to 16). In the plurality of cores of the multicore optical fiber (1), a skew value (S) between a pair of cores is expressed by a predetermined expression. The multicore optical fiber (1) is bent in a specific bending direction, in which in all of the combinations of the pairs of cores in the plurality of cores, the pair of cores has the maximum absolute value of the skew value found by the expression and the skew value of the pair of cores is a minimum value.