Abstract:
A process for removing a cyclododecanone-rich fraction from a dehydrogenation mixture comprising low boilers, cyclododecanone, medium boilers, cyclododecanol and high boilers is provided. According to the process, the cyclododecanone is separated from the cyclododecanol in a dividing wall column. The apparatus which is the dividing wall column is also provided within this invention.
Abstract:
The invention relates to a process for preparing isophorone (3,5,5-trimethyl-2-cyclohexen-1-one) in the presence of at least one defoamer in the wastewater column in the workup section.
Abstract:
Methods for continuously preparing cyclohexanone from phenol make use of a catalyst having at least one catalytically active metal selected from platinum and palladium. The process includes enriching phenol in a distillation fraction as compared to a subsequent fraction, wherein the subsequent fraction includes phenol and side-products having a higher boiling point than phenol. Distillation is carried out in a vacuum distillation column equipped with trays in the lower part of the column. In an upper part of the column, i.e., in the part above the feed inlet, packing material is present instead of trays in at least part thereof. The packing material has a comparable or improved separating efficiency, and provides a reduction of the pressure drop by at least 30%, preferably more than 50%, as compared to the case with trays in the upper part, under otherwise similar distillation conditions.
Abstract:
The present invention relates to an apparatus for coproducting iso-type reaction product and alcohol from olefin, and a method for coproducting using the apparatus, in which the hydroformylation reactor provides a sufficient reaction area due to the broad contact surface area between the olefin and the synthesis gases that are the raw materials by a distributor plate installed in the reactor, and the raw materials can be sufficiently mixed with the reaction mixture due to the circulation of the reaction mixture so that the efficiency of the production of the aldehyde is excellent; and also the hydrogenation reactor suppresses the side reaction so that the efficiency for producing aldehyde and alcohol are all increased, and also iso-type reaction product and alcohol can be efficiently co-produced.
Abstract:
The invention relates to a method for producing isophorone by catalyzed aldol condensation of acetone as an educt, reprocessing the reaction product, hydrolyzing the product stream, and separating into an organic and an aqueous fraction, obtaining isophorone from the organic fraction, distillatively reprocessing the aqueous fraction, and feeding the vapors from the head of the distillative reprocessing apparatus into the hydrolysis apparatus.
Abstract:
A process for producing allyl alcohol is disclosed. The process comprises reacting propylene, acetic acid, and oxygen to produce a reaction mixture. The reaction mixture is distilled to produce a vapor stream comprising propylene and a liquid stream comprising allyl acetate, acetic acid, acrolein, and allyl diacetate. The liquid stream is distilled to produce a lights stream comprising acrolein; a side draw comprising allyl acetate, acetic acid, and water; and a bottoms stream comprising acetic acid and allyl diacetate. The bottoms stream is distilled to remove a heavies stream comprising allyl diacetate. The side draw is hydrolyzed to produce allyl alcohol.
Abstract:
A method for producing acetophenone comprising: treating one or more alkylbenzenes comprising s-butylbenzene to produce a feed comprising phenol and acetophenone; separating a crude phenol stream from the feed under crude phenol separation conditions effective to produce a crude phenol heavies; and, separating an acetophenone stream directly from the crude phenol heavies under azeotropic distillation conditions.
Abstract:
The present invention relates to a process for recovering components from a low boiler mixture which is obtained in the distillation of hydrogenation effluents from the preparation of polymethylols, by multistage distillation of the low boiler mixture comprising a tertiary amine, water, methanol, polymethylol of the formula (I) methylolalkanal of the formula (II) alcohol of the formula (III) and an alkanal with a methylene group in the α position to the carbonyl group, and in which each R is independently a further methylol group or an alkyl group having 1 to 22 carbon atoms or an aryl or aralkyl group having 6 to 22 carbon atoms, a first distillation stage involving separating the low boiler mixture into a higher-boiling, predominantly water-rich fraction and into a lower-boiling aqueous organic fraction comprising the tertiary amine, and the second distillation stage involving separating the aqueous organic fraction from the first distillation stage into a predominantly amine-containing fraction and a further amine-depleted fraction, wherein the tertiary amine is trimethylamine or triethylamine, and the bottom temperature in the second distillation stage is 110° C. and more.
Abstract:
To provide a process for producing anhydrous hexafluoroacetone from hexafluoroacetone hydrate. To provide a process taking environment into consideration, that does not require a treatment of wastes, such as waste sulfuric acid, containing organic substances, which is inevitable in processes conducted hitherto using concentrated sulfuric acid, fuming sulfuric acid, and the like.A process for dehydrating a hexafluoroacetone hydrate, comprising introducing a hexafluoroacetone hydrate and hydrogen fluoride either as a mixture or separately into a distillation column, obtaining a composition containing hexafluoroacetone or a hexafluoroacetone-hydrogen fluoride adduct and hydrogen fluoride as a low boiling component, and obtaining a composition containing water and hydrogen fluoride as a high boiling component.
Abstract:
The present invention relates to a method for continuously preparing cyclohexanone from phenol making use of a catalyst comprising at least one catalytically active metal selected from platinum and palladium comprising hydrogenating phenol to form a product stream comprising cyclohexanone and unreacted phenol; separating at least part of the product stream, or at least part of the product stream from which one or more components having a lower boiling point than cyclohexanone have been removed, into a first fraction comprising cyclohexanone and a second fraction comprising phenol and cyclohexanol, using distillation; separating the second fraction into a third fraction, rich in cyclohexanol, and a fourth fraction, rich in phenol, using distillation;—subjecting at least part of the fourth fraction to a further distillation step, thereby forming a fifth fraction and a sixth fraction, wherein the fifth fraction is enriched in phenol compared to the sixth fraction, and wherein the sixth fraction comprises side-products having a higher boiling point than phenol, and phenol; and which method is characterized in the additional step of continuously or intermittently separating at least part of the sixth fraction to yet a further distillation step, thereby forming a seventh fraction and an eight fraction, wherein the seventh fraction is enriched in phenol compared to the eight fraction, and wherein the eight fraction comprises side-products having a higher boiling point than phenol.