摘要:
The invention relates to a method for re-melting coated aluminum alloy scrap comprising a step of supplying shredded coated aluminum alloy scrap, consisting of individual entities; a decoating step, a step of preparing a heel, a step of loading and melting the decoated scrap on the heel. The invention is characterized in that the scrap has a specific geometry wherein at least 50% of the individual entities of the shredded coated scrap has a fold ratio (R) of less than or equal to 0.6, wherein the fold ratio (R) of an individual entity is defined by: fold ratio=R=(unfolded area−folded area)/(unfolded area), wherein the folded area is the maximum area of the orthogonal projection of the individual entity onto a plane and the unfolded area is the total area of the same individual entity after it has been unfolded.
摘要:
A process for producing high-purity magnesium by distillation at reduced pressure, which includes providing an apparatus having a retort formed from a material inert with respect to magnesium and an upper region defined by two vertically spaced level lines, a condensation vessel having a lower region and an upper region extending into the upper region of the retort, wherein the retort and condensation vessel are coupled to one another by an opening arranged in the upper region of the condensation vessel; providing a magnesium-containing metal melt to the retort at a level below the gap; and heating and maintaining the upper region of the retort at a temperature above the boiling point of magnesium to fill the retort with steam, thereby delivering a high purity melt into the condensation vessel via the opening.
摘要:
A method of melting and refining an alloy comprises vacuum induction melting starting materials to provide a vacuum induction melted alloy. At least a portion of the vacuum induction melted alloy is electroslag remelted to provide an electroslag remelted alloy. At least a portion of the vacuum arc remelted alloy is vacuum arc remelted to provide a singly vacuum arc remelted alloy. At least a portion of the singly vacuum arc remelted alloy is vacuum arc remelted to provide a doubly vacuum arc remelted alloy. In various embodiments, a composition of the vacuum induction melted alloy comprises primarily one of vanadium, chromium, manganese, iron, cobalt, nickel, copper, niobium, molybdenum, technetium, ruthenium, rhodium, palladium, silver, tantalum, tungsten, rhenium, osmium, iridium, platinum, and gold.
摘要:
Systems and corresponding methods are described herein that provide an effective inert blanket over a metal surface (hot solid (charge) metal or molten metal) in a container such as an induction furnace. The system includes a container of metal and a system configured to delivery biphasic inert cryogen toward the metal. The delivery system may include a lance disposed at the top of the container. The lance has a hood that directs both a flow of liquid cryogen and a flow of vaporous gas toward the metal surface. The liquid cryogen contacts the metal surface, generating a volume of expanding gas over the metal surface. The vaporous cryogen creates a reinforcing vapor that slows the expansion rate of the expanding gas, localizing the expanding gas over the metal surface.
摘要:
The present invention relates to the field of magnesium and magnesium alloy processing, and discloses a use of aluminum-zirconium-carbon (Al—Zr—C) intermediate alloy in wrought processing of magnesium and magnesium alloys, wherein the aluminum-zirconium-carbon intermediate alloy has a chemical composition of: 0.01% to 10% Zr, 0.01% to 0.3% C, and Al in balance, based on weight percentage; the wrought processing is plastic molding; and the use is to refine the grains of magnesium or magnesium alloys. The present invention further discloses the method for using the aluminum-zirconium-carbon (Al—Zr—C) intermediate alloy in casting and rolling magnesium and magnesium alloys. The present invention provides an aluminum-zirconium-carbon (Al—Zr—C) intermediate alloy and the use thereof in the plastic wrought processing of magnesium or magnesium alloys as a grain refiner. The aluminum-zirconium-carbon intermediate alloy has the advantages of great ability in nucleation and good grain refining effect, and achieves the continuous and large-scale production of wrought magnesium and magnesium alloy materials.
摘要:
Systems and corresponding methods are described herein that provide an effective inert blanket over a metal surface (hot solid (charge) metal or molten metal) in a container such as an induction furnace. The system includes a container of metal and a system configured to delivery biphasic inert cryogen toward the metal. The delivery system may include a lance disposed at the top of the container. The lance has a hood that directs both a flow of liquid cryogen and a flow of vaporous gas toward the metal surface. The liquid cryogen contacts the metal surface, generating a volume of expanding gas over the metal surface. The vaporous cryogen creates a reinforcing vapor that slows the expansion rate of the expanding gas, localizing the expanding gas over the metal surface.