Abstract:
A slide surface construction is formed of a large number of truncated hexagonal pyramid-shaped metal crystals in a slide surface, with the area rate A of said truncated hexagonal pyramid-shaped metal crystals being in a range of 40%≦A≦100%. A top face of each of the truncated hexagonal pyramid-shaped metal crystals has a plurality of flat face portions, with a step provided between adjacent ones of the flat face portions. Each of the truncated hexagonal pyramid-shaped metal crystals is a (hhh) oriented metal crystal which has a body-centered cubic structure and whose (hhh) plane (by Miller indices) is oriented toward the slide surface.
Abstract translation:滑动表面结构由滑动表面上的大量截头六角锥形金属晶体形成,所述截头六角锥形金属晶体的面积率A在40%<= A <= 100的范围内 %。 每个截头六角锥形金属晶体的顶面具有多个平面部分,在相邻的平面部分之间设置有台阶。 每个截头六角锥形金属晶体是具有体心立方结构的(hhh)取向的金属晶体,并且其(hhh)面(通过米勒指数)朝向滑动表面。
Abstract:
An anti-polishing ring (143) formed to be integral with the cylinder head (132) of a diesel locomotive engine (120). A top portion (140) of a piston (128) of the engine is received by a skirt portion (142) of the cylinder head. The skirt portion has a diameter D4 that is greater than the piston diameter D3 but more than the diameter D1 of a cylinder liner (126). A coolant passage (148) may be formed in the cylinder head proximate the integral anti-polishing ring.
Abstract:
Past pistons have been susceptible to reduced longevity due to increased forces of combustion thereon during operating cycles of an engine. The present two piece unitary piston increases the longevity of pistons used with increased forces of combustion. For example, a head member has a crown portion defining a ring band portion having a bottom surface and a support portion. And, a skirt member defines a ring band support surface and a mating portion. The head member and the skirt member have a preestablished material strength being generally the same. The head member and the skirt member are joined at an interface of the support portion and the mating portion by an interference fit and are joined at the interface of the bottom surface and the ring band support surface by a weld. The force of combustion acting on the crown portion is resisted by the ring band support surface being in contacting relationship with the bottom surface. Thus, the skirt member structure supports and resists the bending moment of the combustion forces on the head member.
Abstract:
A porous composite forming material is held in a cavity of a casting mold, and molten light alloy is poured into the cavity of the casting mold through a gate. Then a gas pressure is applied to the cavity in the casting mold with the cavity closed, thereby impregnating the pores of the porous composite forming material with the molten light alloy and forming a composite portion formed of a composite material of the light alloy and the composite forming material.
Abstract:
A piston (20) for an engine having a crown portion (22) that contains a generally closed cooling chamber (58) that communicates with a cooling fluid source by a cooling bore (74) formed in a pin ear (60, 62). A tube portion (80) is located along the cooling bore (74) and cooperates with the cooling bore (74) to provide a continuous inlet passageway (88) to the cooling chamber (58).
Abstract:
A compressor, which is adapted for use in an air-conditioning system of a motor vehicle, having a housing (2) and a compressor unit (1) arranged in the housing (2) for drawing in and compressing a coolant. The structural size of the compressor is reduced, while sufficient compressor capacity is ensured, as a result of manufacturing the housing (2) from a high-strength material and using a gas that has a high density even in the drawn-in state as the coolant.
Abstract:
A three-dimensional piston molding is fabricated from a mixture of chopped, carbon tow filaments of variable length, which are prepregged with carbonaceous organic resins and/or pitches and molded by conventional molding processes into a near net shape, to form a carbon-fiber reinforced organic-matrix composite part. Continuous reinforcement in the form of carbon-carbon composite tapes or pieces of fabric can be also laid in the mold before or during the charging of the mold with the chopped-fiber mixture, to enhance the strength in the crown and wrist-pin areas. The molded chopped-fiber reinforced organic-matrix composite parts are then pyrolized in an inert atmosphere, to convert the organic matrix materials to carbon. These pyrolized parts are then densified by reimpregnation with resins or pitches, which are subsequently carbonized. Densification is also accomplished by direct infiltration with carbon by vapor deposition processes. Once the desired density has been achieved, the piston molds are machined to final piston dimensions, and piston ring grooves are added. To prevent oxidation and/or to seal the piston surface or near surface, the chopped-fiber piston is coated with ceramic and/or metallic sealants; and/or coated with a catalyst.
Abstract:
An improved structure for carbon-carbon composite piston architectures consists of replacing the knitted fiber, three-dimensional piston preform architecture described in U.S. Pat. No. 4,909,133 (Taylor et al.) with a two-dimensional lay-up or molding of carbon fiber fabric or tape. Initially, the carbon fabric or tape layers are prepregged with carbonaceous organic resins and/or pitches and are laid up or molded about a mandrel, to form a carbon-fiber reinforced organic-matrix composite part shaped like a "U" channel, a "T"-bar, or a combination of the two. The molded carbon-fiber reinforced organic-matrix composite part is then pyrolized in an inert atmosphere, to convert the organic matrix materials to carbon. At this point, cylindrical piston blanks are cored from the "U"-channel, "T"-bar, or combination part. These blanks are then densified by reimpregnation with resins or pitches which are subsequently carbonized. Densification is also be accomplished by direct infiltration with carbon by vapor deposition processes. Once the desired density has been achieved, the piston billets are machined to final piston dimensions; coated with oxidation sealants; and/or coated with a catalyst. When compared to conventional steel or aluminum alloy pistons, the use of carbon-carbon composite pistons reduces the overall weight of the engine; allows for operation at higher temperatures without a loss of strength; allows for quieter operation; reduces the heat loss; and reduces the level of hydrocarbon emissions.
Abstract:
A collection of agglomerated anti-friction grains for plasma deposition, the grains each consisting essentially of (a) H.sub.2 O atomized stainless steel particles, (b) solid lubricant particles consisting of at least one of boron nitride or a eutectic of calcium fluoride and lithium fluoride, and (c) a binder holding said steel and solid lubricant particles together for plasma spraying, said binder being present in an amount of 0.5-4.0% by weight and is vaporizable at the temperature of plasma spraying and does not interfere with the deposited process. A method of making agglomerated grains of powder suitable for plasma deposition, by (a) H.sub.2 O atomization of a molten stream of martensitic stainless steel to produce a collection of first particles, (b) uniformly blending such first particles with solid lubricant second particles and a binder agent in a slurry, the binder agent being present in a small amount and being constituted to vaporize at the temperature of plasma spraying, and (c) mist spraying the slurry into a heated chamber to form a collection of porous rounded granules.
Abstract:
This invention is a simple, safe, and inexpensive beam structure for tractor forward mounting of a blade (24). A pivot plate (11) is mounted at the tractor lower mid-section. Parallel beams (12) are positioned through the pivot plate (11) and extend beyond the tractor front and rear. The aft ends of beams (12) are attached to the tractor 2 or 3 point rear hydraulic lift arms (26). The forward ends of the beams (12) are the blade primary attachment points. A counterweight (13) attached rearward will raise the blade (24) when the tractor 2 or 3 point rear hydraulic lift arms (26) are lowered. The blade (24) is lowered by raising the 2 and 3 point rear hydraulic lift arms (26), thereby, giving effective vertical control of the front mounted blade.