Abstract:
According to a burner of the present invention, a stable combustion is obtained in a wide range from a high-load operation condition to a low-load operation condition even in the case of low quality solid fuel such as brown coal. The amount of air supplied from additional air holes or additional air nozzles 12 can be adjusted depending on the combustion load of furnace 41. At a low load, the amount of air supplied from additional air holes or additional air nozzles 12 is increased, whereby the oxygen concentration in a recirculation zones 19 formed downstream of the outside of a fuel nozzle 11 exit, permits a stable combustion. At a high load, the amount of air supplied from additional air holes or additional air nozzles 12 is reduced, whereby a flame is formed in a position far from the fuel nozzle 11. This suppresses thermal radiation onto a solid fuel burner 42 structure and a furnace 41 wall. The solid fuel burner 42 is applicable to combustion using low-quality solid fuel such as brown coal and exhaust gas as the carrier gas.
Abstract:
This invention discloses the synergistic integration of solid fuel combustion, low NOx control technologies (such as Low NOx Burners, reburning and Advanced Reburning) with partial in-duct gasification of coal or other solid fuels. For partial gasification, the solid fuel can be transported and injected by recycled flue gas stream at 600-800° F. in the reburning zone or in the upper section of the main combustion zone of a boiler. This allows the fuel to be preheated and partially pyrolyzed and gasified in the duct and then injected into the boiler as a mixture of coal, gaseous products, and char. Gasification increases coal reactivity and results in lower carbon-in-ash levels. As an option, the gaseous and solid products can be split using a cyclone separator. Splitting the gasified fuel stream will allow the volatile matter to be used for reburning and the fixed carbon to be injected into the high-temperature main combustion zone.
Abstract:
A furnace that combusts fuel, such as coal, of a given minimum energy content to obtain a stated minimum amount of energy per unit of time is enabled to combust fuel having a lower energy content, while still obtaining at least the stated minimum energy generation rate, by replacing a small amount of the combustion air fed to the furnace by oxygen. The replacement of oxygen for combustion air also provides reduction in the generation of NOx.
Abstract:
NOx emissions from combustion are reduced, NOx reduction efficiency by SNCR is improved, and other efficiencies are realized, by injecting oxygen into a fuel-rich combustion zone under controlled conditions.
Abstract:
The invention refers to a method for black liquor gasification in recovery boilers, of the type having a lower portion, referred to as a lower furnace and an upper portion, referred to as an upper furnace, black liquor sprayers for introduction of black liquor provided in the boiler above the lower furnace, and a number of combustion air levels, whereby the invention incorporates adding oxygen enriched air to the combustion air or directly into the lower furnace at at least one air level underneath the liquor sprayers for the purpose of creating the best possible reducing conditions in the lower furnace, redistributing from the lower furnace combustion air not needed therein following said addition of oxygen enriched air, thereby significantly reducing upward gas velocity underneath the black liquor sprayers, and introducing said redistributed combustion air in the upper furnace, thereby creating the reducing conditions and a controlled temperature in the lower furnace for emission control.
Abstract:
A boiler has a combustion chamber formed by front and rear walls and a side wall extending between the front and rear walls. Plural stages of burners are placed on at least one of the front and rear walls. In the front and rear walls are opposing gas jets for making a pressure of the gas near the side wall within the combustion chamber higher than the pressure of the gas at a center portion of the combustion chamber. The gas jet ports are disposed at a height within a range of the height of the burner stages. The burner stages supply the pulverized coal, the air for transferring the pulverized coal and the air for burning. A part of the air for transferring the pulverized coal or the air for burning is supplied in a branched manner to the gas jet port and injected into the combustion chamber. Further, the air is preferably injected from the gas jet ports in a direct gas flow, not a swirling flow.
Abstract:
A method of operating a solid fuel-fired furnace having a plurality of windboxes each having a plurality of compartments through which fuel and air are introduced into the furnace and a fuel and air arrangement operated in accordance with the method are provided. Solid fuel is fed into the furnace and primary air and fuel are fed through the same compartments into the furnace in a direction tangential to a first imaginary circle generally located in the center of the furnace so as to interact with the fuel fed into the furnace so as to create a rotating fireball. Overfire air and offset air are also supplied into the furnace, the offset air being that portion of the air supplied to the furnace so as to support a second imaginary circle concentric to, and having a larger diameter than, the first imaginary circle. The total air supplied into the furnace is thus composed of primary air, additional combustion supporting air, overfire air, and offset air supplied in accordance with a prescribed relationship between the components of the supplied air.
Abstract:
An air nozzle for introducing secondary air into a furnace and including a housing provided with an inlet at one end thereof for receiving air and an outlet at the other end thereof for discharging the air. A damper is disposed in the housing in the path of the air for splitting the flow of the air into two flow streams which extend to different areas of the furnace and is adapted for pivotal movement in the housing to vary the amount of air flow in each of the streams and the discharge angle of one of the streams.
Abstract:
An air nozzle for introducing secondary air into a furnace and including a housing provided with an inlet at one end thereof for receiving air and an outlet at the other end thereof for discharging the air. A damper is disposed in the housing in the path of the air for splitting the flow of the air into two flow streams which extend to different areas of the furnace and is adapted for pivotal movement in the housing to vary the amount of air flow in each of the streams and the discharge angle of one of the streams.
Abstract:
A method and an arrangement for supplying air to a recovery boiler. In the method, the air is supplied to the recovery boiler at at least one air supply level so that four vortices are formed therein, the vortices spinning, in pairs, in opposite directions to one another so that any two adjacent vortices always spin in opposite directions to one another. The arrangement comprises nozzles that are arranged to blow air so that four vortices are formed in the recovery boiler, any two adjacent vortices always spinning in opposite directions to one another.