Abstract:
A vacuum heat insulating body includes core material and outer packing material that vacuum-seals core material. Core material includes first heat insulating core material and second heat insulating core material having ventilation characteristics. Moreover, first heat insulating core material has ventilation resistance greater than the ventilation resistance of second heat insulating core material. First heat insulating core material is configured with an open-cell resin, and second heat insulating core material is configured with a fiber material or a powder material having ventilation resistance smaller than the ventilation resistance of the open-cell resin.
Abstract:
An oil holding tank (40) is communicated to the case (10c) of the compressor (10). Part of the refrigerant discharged from the compressor (10) is introduced into the oil holding tank (40) so that the lubrication oil (L) is allowed to flow out from the oil holding tank (40) and the lubrication oil (L) which flows out is allowed to return to the case (10c). The presence of the lubrication oil (L) is detected from a comparison between the temperature (TK1) of the refrigerant introduced from the compressor (10) to the oil holding tank (40) and the temperature (TK2) of the lubrication oil (4) flowing out from the oil holding tank (40). On the basis of the result of the detection, it is judged whether or not the amount of the lubrication oil (L) in the case (10c) is appropriate.
Abstract:
A cabinet structure is thermally insulated by placing a first insulation material directly upon a surface of the cabinet structure and then covering the insulation material with a barrier sheet that is affixed along an annular edge portion thereof to the cabinet structure. In this manner, the insulation material is retained within a chamber defined between the barrier sheet and the cabinet structure. This chamber is then evacuated to a low pressure, generally in the order of 0.1-10 mm Hg, and sealed. This integrated vacuum panel insulation arrangement is particularly advantageous for use in constructing entire thermal cabinets by providing a blank that defines multiple walls of the cabinet; arranging the insulation on the inner surfaces of the blank; placing one or more barrier sheets over the insulation; attaching edges of the barrier sheet(s) to the inner surfaces of the walls so as to define respective chambers between the barrier sheet(s) and the respective inner wall surfaces; evacuating each of the chambers; and sealing the chambers. When used with a cabinet that includes an additional liner, this insulation arrangement is preferably used on the shell of the cabinet and, following insertion of the liner within the shell, additional insulation is provided between the liner and the barrier sheet(s).
Abstract:
A boxlike body (10) with a rear wall (12) and four side walls (14) is brought into a fixture (34) with the free edges (22) of the side walls pointing downwards. The walls of the body are filled with insulating powder by blowing the powder into the rear wall (12) by gaseous medium of a first pressure. The powder is then packed by gaseous medium of a second pressure, which is higher than the first pressure, being let into the rear wall. During the filling and packing the media is let out via a filter element (24) arranged at the free edges (22) of the side walls. After the filling and packing the media is evacuated from the walls through the filter element (24). The body can then be used as a so-called vacuum insulation in a refrigerator or freezer.
Abstract:
Insulating panels are formed from compressed particulate material impregnated with insulating gases, the combination being held in a gas tight pouch. These pouches can be placed in the insulation space of a structure where insulation is to be provided and, if desired, encapsulated in a foamed insulating material. Among the possible particulate materials is precipitated silica, while various Freon gases can be employed as the insulating gas.
Abstract:
Precipitated silica is mixed with a fly ash material and is employed as an insulating material having a low thermal conductivity. The mixture of precipitated silica and fly ash material is dried, compressed, placed in an evacuable pouch, and evacuated. The resulting board-like insulation configuration is used directly as insulation. The board-like material which is produced may be used as insulation in household refrigerators and freezers by placing it in an insulation space between the inner liner and the outer case and encapsulating the board-like material with a foamed insulating material.
Abstract:
A connector assembly includes a base plate that defines a fill opening and an aperture. A fill tube is coupled to a first side of the base plate. The fill tube is aligned with the fill opening. A radial flange is coupled to a second side of the base plate. The radial flange extends around the fill opening. A toggle magnet is coupled to the first side of the base plate proximate to the aperture. The toggle magnet is operable between an activated state and a deactivated state.
Abstract:
A vacuum insulated refrigerator structure includes an outer wrapper having a first opening and a first edge extending around the first opening. A liner has a second opening and second edge extending around the second opening. The liner is disposed inside the wrapper with the first and second edges being spaced apart to form a gap therebetween. An insulating thermal bridge extends across the gap, and an airtight vacuum cavity is formed between the wrapper and the liner. The thermal bridge includes elongated first and second channels having sealant disposed therein, and the first and second edges are disposed in the first and second channels, respectively. Porous core material may be disposed in the vacuum cavity.
Abstract:
A refrigerator includes a vacuum-insulated cabinet structure enclosing an insulating cavity and including an outer wrapper having a first side wall defining a perimeter, an outer frame portion defined radially inward of the perimeter, and an inner area surrounded and supported by the outer frame portion. The inner area initially defines a first planar level with at least a portion of the outer frame portion extending to a second planar level parallel to and spaced apart from the first planar level in an axially outward direction. The insulating cavity is sealed and has a vacuum drawn therefrom with the outer frame portion deformed such that the inner area is moved axially inward away from the second planar level under a force of the vacuum within the insulating cavity with at least the portion of the outer frame portion remaining at the second planar level.