Abstract:
A spectral radiation detector employs at least one lenslet with a circular blazed grating for diffraction of radiation at a wavelength at nth order to a focal plane A detector is mounted at the focal plane receiving radiation passing through the at least one lenslet for detection at a predetermined order. At least one order filter associated with the at least one lenslet passes radiation at wavelengths corresponding to the predetermined order. In additional embodiments a polarizing filter is associated with the lenslet for additional discrimination of the radiation.
Abstract:
An Echelle spectrometer arrangement (10) with internal order separation contains an Echelle grating (34) and a dispersing element (38) for order separation so that a two-dimensional spectrum having a plurality of separate orders (56) can be generated, an imagine optical system (18, 22, 28, 46), a flat-panel detector (16), and predispersion means (20) for predispersing the radiation into the direction of traverse dispersion of the dispersion element (38). The arrangement is characterized in that the predispersion means (20) comprise a predispersion element which is arranged along the optical path behind the inlet spacing (12) inside the spectrometer arrangement. The imaging optical system is designed in such a manner that the predispersed radiation can be imaged onto an additional image plane (24) which does not have any boundaries in the predispersion direction and which is arranged along the optical path between the predispersion element (20) and the echelle grating (34). Optical means (20, 68) in the area of the predispersed spectrum are arranged to influence the spatial and/or the spectral beam density distribution on the detector (16).
Abstract:
A fluorometer having extremely high spectral resolution and the capability of blocking exciting light. The fluorometer is inexpensive and rugged since it may comprise a device with no moving parts. The fluorometer comprises the following main components, a light input for receiving the fluorescing light, a collimating lens, a Fabry-Perot etalon, two dichroic mirrors, a Brewster angle wedge prism, and an output for reading the fluorescence.
Abstract:
An apparatus for measuring wavelength composition and power of a dispersed spectrum of light comprises a diffractive light modulator and a detector. The diffractive light modulator comprises an array of light modulating pixels operable in a first mode and a second mode. In operation, the dispersed spectrum of light illuminates the diffractive light modulator along the array of light modulating pixels, which selectively directs a subset of the dispersed spectrum of light into the first mode while directing a remainder of the dispersed spectrum of light into the second mode. The detector is optically coupled to the diffractive light modulator. In operation, the detector detects the subset of the dispersed spectrum of light while not detecting the remainder of the dispersed spectrum of light. Each of the light modulating pixels is controlled by signals sent from a controller. The signals comprise a time division multiplex modulation, a code division multiplex modulation, or a combination thereof.
Abstract:
A high resolution spectrometer with a large free spectral range comprising an entry slit for a beam of electromagnetic radiation to be analyzed, a first dispersion device for dispersing the beam to be analyzed into various wavelength components in a first direction, a second dispersion device for dispersing each wavelength component output from the first dispersion device in a second direction, and an imaging device comprising a sensitive detection spectrum. surface on which the beam dispersed in the first and second directions is focused, the first dispersion device being an optical filter that varies linearly and has a surface on which the beam to be analyzed is focused, each point on the surface of the filter operating like a pass band filter with a central frequency varying linearly in the first direction.
Abstract:
A spectrometer, or a spectral instrument using multiple non-interfering optical beam paths and special optical elements. The special optical elements for use with the instrument are used for directing the optical beam and/or altering the form of the beam. The instrument has the potential, depending upon the totality of the optical components incorporated into the instrument, to be a monochromator, a spectroradiometer, a spectrophotometer and a spectral source. The spectral instrument may further be a part of the spectral system. The system may include the spectral instrument, a power module and means for remote control of the instrument. Such remote control may be by use of a personal computer or a control system dedicated to the control, measurement and analysis of the collected information. The multiple non-interfering beam paths are created using specially designed optical elements such as a diffraction grating, a splitter box, a zero back-lash drive system for movement of the grating element. The orientation of and a physical/spatial relationship between the field lenses, slits, return mirror, reflecting prism, turning lenses all define the multiple, preferably two paths. Particularly, there is a double pass through the grating to increase dispersion, reduce scatter while maintaining a perfect temperature independent spectral match for the second pass. Using the same grating twice reduces scatter by about a factor of 1000, increases the dispersion by a factor of two, and eliminates any temperature-related mechanical spectral drift which often is present with two separate monochromators. Because of the specially designed grating structure, the grating can cause the concurrent diffraction of a plurality of incident optical beams, each of which beams have different angles of incidence and different angles of reflection. The path of the incident and the reflected beam to and from the grating is “off-axis”. That is, the beams going to and from the grating do not use the optical axis of the grating structure.
Abstract:
The Ebert-type mounting is modified for use as a multiorder spectrograph, by replacing the spherical primary mirror of the Ebert with a paraboloidal mirror to eliminate the astigmatism and spherical aberration of the Ebert mounting, and by replacing the Ebert's rotating plane grating, normally blazed for use in the first order, with a fixed low-blaze-angle grating blazed at a longer wavelength such that the radiation at the shorter wavelengths, for which the grating will be used, will be most efficiently dispersed into a multiplicity of higher spectral orders. In a preferred embodiment of this invention, these spectral orders are separated using a twice-through cross-dispersing prism mounted near the grating surface, with the grating and prism mounted and aligned together in a crossed-dispersion assembly that is interchangeable with other crossed-dispersion assemblies containing other grating and prism combinations.
Abstract:
An Echelle polychromator 50 has disposed upstream thereof a pre-monochromator 14 comprising a prism 20. The linear dispersion of the pre-monochromator 14 is variable by varying the angular dispersion of the prism 20. A particular spectral position and the close vicinity thereof are analyzed by an Echelle grating 54 with high resolution. Care must be taken that, on the one hand, the detector array 66 of the Echelle polychromator 50 is fully exploited in response to the central wavelength respectively observed and that, on the other hand, interfering orders are kept away from the Echelle polychromator 50. The linear dispersion of the pre-monochromator is variable for this purpose.