Abstract:
An Echelle spectrometer arrangement (10) with internal order separation contains an Echelle grating (34) and a dispersing element (38) for order separation so that a two-dimensional spectrum having a plurality of separate orders (56) can be generated, an imagine optical system (18, 22, 28, 46), a flat-panel detector (16), and predispersion means (20) for predispersing the radiation into the direction of traverse dispersion of the dispersion element (38). The arrangement is characterized in that the predispersion means (20) comprise a predispersion element which is arranged along the optical path behind the inlet spacing (12) inside the spectrometer arrangement. The imaging optical system is designed in such a manner that the predispersed radiation can be imaged onto an additional image plane (24) which does not have any boundaries in the predispersion direction and which is arranged along the optical path between the predispersion element (20) and the echelle grating (34). Optical means (20, 68) in the area of the predispersed spectrum are arranged to influence the spatial and/or the spectral beam density distribution on the detector (16).
Abstract:
The invention relates to a spectrometer arrangement (10) comprising a spectrometer (14) for producing a spectrum of a first wavelength range of radiation from a radiation source on a detector (42). Said arrangement also comprises: an Echelle grating (36) for the spectral decomposition of the radiation penetrating the spectrometer arrangement (10) in a main dispersion direction (46); a dispersing element (34) for separating the degrees by means of spectral decomposition of the radiation in a transversal dispersion direction (48) which forms an angle with the main dispersion direction of the Echelle grating (36), in such a way that a two-dimensional spectrum (50) can be produced with a plurality of separated degrees (52); an imaging optical element (24, 38) for imaging the radiation penetrating through an inlet gap (20) into the spectrometer arrangement (10), in an image plane (40); and a surface detector (42) comprising a two dimensional arrangement of a plurality of detector elements in the image plane (40). The inventive arrangement is characterized in that another spectrometer (12) comprising at least one other dispersing element (64) and another imaging optical element (60,66) is provided in order to produce a spectrum (68) of a second wavelength range of radiation, which is different from the first wavelength range, from a radiation source on the same detector (42). The spectra can be spatially or temporally separated on the detector.
Abstract:
The invention relates to a spectrometer (10) with a dispersive element (16) that can be displaced between at least two positions. In the first position, the simply dispersed radiation (44) of a selected wavelength is reflected directly back in the incident beam path (42), while in the second position the dispersed radiation (32) of the selected wavelength can be directed to a reflective element (30) that is positioned such that the radiation (34) can be directed at least one more time across the dispersive element (16) and then back to the incident beam path (38). The spectrometer is provided with a device, for example, a mirror, an echelle grating or a prism that deflects the beam from the plane of dispersion, which is arranged in such a manner that the simply dispersed beam (34) runs in another plane than the multiply dispersed beam (36). The mirror (30) is inclined by an axis (54) that extends parallel to the plane of dispersion and perpendicular to the incident beam (32).
Abstract:
The invention relates to an Echelle polychromator and can be employed in instruments for the spectrophotometric investigation of radiation sources. It is characterized in that, connected in series with the polychromator, there is a dispersive and polychromatic illuminating device, which is formed from an entrance slit arrangement, collimator optics, prism and camera optics, the entrance slit arrangements of the polychromator and of the illuminating device consisting of a main slit for limiting the bundle in the grating dispersion direction and a transverse slit for limiting the bundle in the direction of the dispersion of the prism in the Echelle polychromator. The whole of the wavelength range, which is to be processed by the polychromator, is imaged completely with negligible aberration on the transverse slit of the Echelle polychromator as a spectrum of the illuminating device. The dispersion of the illuminating device runs in the direction of the transverse dispersion of the prism of the Echelle polychromator. The dispersion-induced geometric width of the spectrum of the illuminating device for the whole of the wavelength region that is to be processed by the polychromator is less than the width of the transverse slit of the Echelle polychromator. Parts of the bundle of rays of the spectrum of the illuminating device are blocked out by the transverse slit of the Echelle polychromator.
Abstract:
The invention relates to an optical system for spectral analysis devices particularly for use in atomic emission spectroscopy in which the aberrations, astigmatis and coma are compensated separately, comprising two concave spherical reflectors adjacently arranged and having their vertices equidistantly located relative to a center of a dispersing member. The latter has a dispersion plane at right angles to the dispersing structure of the dispersing member and to its surface, the vertices are located in said dispersion plane. The center beams originating from an excitation light source are reflected at the reflectors in reflection planes which are at right angles to the dispersion plane. The light entrance of the optical system comprises two slits the images of which coincide in a focal plane. The center of the focal plane and the light entrance have a same distance to the dispersion plane and are located on different sides of the latter.
Abstract:
A method to determine and correct broadband background in complex spectra in a simple and automatized manner includes carrying out a background correction with respect to broadband background before a calibration step. The background correction may involve recording a spectral graph and smoothing the recorded spectral graph, determining all values in the initially recorded graph having a value higher than the value of the smoothed graph and reducing such values to the value of the smoothed graph, and repeating these two steps. The background graph obtained is then subtracted from the initial graph. The smoothing of the graph is carried out by moving average, where each intensity value I at the position x in the spectrum is replaced by an average value. The characteristics of the found peaks can be stored in a file so that the calibration can be used at any time.
Abstract:
A method to determine and correct broadband background in complex spectra in a simple and automatized manner includes carrying out a background correction with respect to broadband background before a calibration step. The background correction may involve recording a spectral graph and smoothing the recorded spectral graph, determining all values in the initially recorded graph having a value higher than the value of the smoothed graph and reducing such values to the value of the smoothed graph, and repeating these two steps. The background graph obtained is then subtracted from the initial graph. The smoothing of the graph is carried out by moving average, where each intensity value I at the position x in the spectrum is replaced by an average value. The characteristics of the found peaks can be stored in a file so that the calibration can be used at any time.
Abstract:
The invention relates to a spectrometer arrangement (10) having a spectrometer for producing a spectrum of radiation from a radiation source on a detector (34), comprising an optical imaging Littrow arrangement (18, 20) for imaging the radiation entering the spectrometer arrangement (16) in an image plane, a first dispersion arrangement (28, 30) for the spectral decomposition of a first wavelength range of the radiation entering the spectrometer arrangement, a second dispersion arrangement (58, 60) for the spectral decomposition of a second wavelength range of the radiation entering the spectrometer arrangement, and a common detector (34) arranged in the image plane of the imagine optics, characterized in that the imaging optical arrangement (18, 20) comprises an element (20) that can be moved between two positions (20, 50), wherein the radiation entering the spectrometer arrangement in the first position is guided via the first dispersion arrangement and in the second position via the second dispersion arrangement.
Abstract:
An Echelle spectrometer arrangement (10) with internal order separation contains an Echelle grating (34) and a dispersing element (38) for order separation so that a two-dimensional spectrum having a plurality of separate orders (56) can be generated, an imagine optical system (18, 22, 28, 46), a flat-panel detector (16), and predispersion means (20) for predispersing the radiation into the direction of traverse dispersion of the dispersion element (38). The arrangement is characterized in that the predispersion means (20) comprise a predispersion element which is arranged along the optical path behind the inlet spacing (12) inside the spectrometer arrangement. The imaging optical system is designed in such a manner that the predispersed radiation can be imaged onto an additional image plane (24) which does not have any boundaries in the predispersion direction and which is arranged along the optical path between the predispersion element (20) and the echelle grating (34). Optical means (20, 68) in the area of the predispersed spectrum are arranged to influence the spatial and/or the spectral beam density distribution on the detector (16).
Abstract:
The invention relates to a spectrometer arrangement (10) having a spectrometer for producing a spectrum of radiation from a radiation source on a detector (34), comprising an optical imaging Littrow arrangement (18, 20) for imaging the radiation entering the spectrometer arrangement (16) in an image plane, a first dispersion arrangement (28, 30) for the spectral decomposition of a first wavelength range of the radiation entering the spectrometer arrangement, a second dispersion arrangement (58, 60) for the spectral decomposition of a second wavelength range of the radiation entering the spectrometer arrangement, and a common detector (34) arranged in the image plane of the imagine optics, characterized in that the imaging optical arrangement (18, 20) comprises an element (20) that can be moved between two positions (20, 50), wherein the radiation entering the spectrometer arrangement in the first position is guided via the first dispersion arrangement and in the second position via the second dispersion arrangement.