摘要:
A method for generating Pairwise Active Appearance Models (PAAMs) that characterize shape, appearance and motion of an object and using the PAAM to track the motion of an object is disclosed. A plurality of video streams is received. Each video stream includes a series of image frames that depict an object in motion. Each video stream includes an index of identified motion phases that are associated with a motion cycle of the object. For each video stream, a shape of the object is represented by a shape vector. An appearance of an object is represented by an appearance vector. The shape and appearance vectors associated at two consecutive motion phases are concatenated. Paired data for the concatenated shape and appearance vectors is computed. Paired data is computed for each two consecutive motion phases in the motion cycle. A shape subspace is constructed based on the computed paired data. An appearance subspace is constructed based on the computed paired data. A joint subspace is constructed using a combination of the shape subspace and appearance subspace. A PAAM is generated using the joint subspace and the PAAM is stored in a database.
摘要:
A method for shape classification of an object is provided. Shape categories are provided which specify a plane and points therein relative to the object, and also specify at least one limit coordinate for each such point, the limit coordinate defining a boundary in a direction normal to the plane for the shape of the object considered in order for the object to be classified into a respective shape category. The shape categories can be provided by a user, making the method very flexible. The shape categories can in particular be derived from a set of samples of objects representing a shape category to be defined. For classification, the position of a surface of the object is measured at each of the points defined in the shape category, and the result is compared with the corresponding limit coordinate.
摘要:
Systems and methods are provided for constructing a statistical shape model from a set of training shapes. In one embodiment, two shapes in the training set can be parameterized to a common base domain. Correspondence between the shapes can be evaluated using shape-specific data, such as, for the case of anatomical shapes, anatomical curves and/or anatomical landmarks. In evaluating correspondence, the shape-specific data about the second shape can be mapped to the shape-specific data about the first shape, and the mapping can be optimized based at least in part on a deformation energy of the mapping.
摘要:
The present disclosure discloses a system and method for creating a customized guest experience at an amusement park. In one example, the method includes capturing by a foot sensor a first foot shape corresponding to at least one foot in a pair of feet of a guest and capturing by a camera a first foot appearance corresponding to at least one foot in the first pair of feet receiving guest data from the guest. The method also includes generating a first foot model using the first foot shape and the first foot appearance and tagging the first foot model with the guest data. The foot model can be used to identify a particular guest and the guest data can be used to output a customized guest experience to the guest.
摘要:
A vision system is configured to dynamically inspect an object in a field of view. This includes capturing, using a camera, three-dimensional (3D) point cloud data of the field of view and transforming each of the points of the 3D point cloud data into a plurality of tangential surface vectors. Surface normal vectors are determined for each of the points of the 3D point cloud data based upon the plurality of tangential surface vectors. Distribution peaks in the surface normal vectors are detected employing a unit sphere mesh. Parallel planes are separated using the distance distribution peaks. A radially bounded nearest neighbor strategy combined with a process of nearest neighbor searching based upon cell division is executed to segment a planar patch. A planar surface is identified based upon the segmented planar patch.
摘要:
A method for recognizing small-font sized text including receiving digital media of a natural scene, the digital media having at least one frame that includes the small-font sized text; generating input maps having values that reflect local properties of corresponding regions in the at least one frame; and detecting regions of the at least one frame that contain the small-font sized text by integrating information from the input maps. The integrated information may include information located between border lines having active pixels therebetween and gaps having a high ratio of non-ink pixels located below a bottom border line and above a top border line in relation to a dominant direction of the text. The active pixels may be pixels having dense changes in character stroke directions.
摘要:
A statistical point pattern matching technique is used to match corresponding points selected from two or more views of a roof of a building. The technique entails statistically selecting points from each of orthogonal and oblique aerial views of a roof, generating radial point patterns for each aerial view, calculating the origin of each point pattern, representing the shape of the point pattern as a radial function, and Fourier-transforming the radial function to produce a feature space plot. A feature profile correlation function can then be computed to relate the point match sets. From the correlation results, a vote occupancy table can be generated to help evaluate the variance of the point match sets, indicating, with high probability, which sets of points are most likely to match one another.
摘要:
The identification of hidden data, such as feature-based control points in an image, from a set of observable data, such as the image, is achieved through a two-stage approach. The first stage involves a learning process, in which a number of sample data sets, e.g. images, are analyzed to identify the correspondence between observable data, such as visual aspects of the image, and the desired hidden data, such as the control points. Two models are created. A feature appearance-only model is created from aligned examples of the feature in the observed data. In addition, each labeled data set is processed to generate a coupled model of the aligned observed data and the associated hidden data. In the second stage of the process, the modeled feature is located in an unmarked, unaligned data set, using the feature appearance-only model. This location is used as an alignment point and the coupled model is then applied to the aligned data, giving an estimate of the hidden data values for that data set.