Cost-effective system and method for detecting, classifying and tracking the pedestrian using near infrared camera
    1.
    发明授权
    Cost-effective system and method for detecting, classifying and tracking the pedestrian using near infrared camera 有权
    使用近红外摄像机检测,分类和跟踪行人的成本效益的系统和方法

    公开(公告)号:US08964033B2

    公开(公告)日:2015-02-24

    申请号:US13380559

    申请日:2010-12-02

    IPC分类号: G06K9/00 G06K9/48

    摘要: A cost effective method for detecting, classifying and tracking the pedestrian present in front of the vehicle by using images captured by near infrared (IR) camera disposed on the vehicle, the said method comprises the processor implemented steps of: detecting the road to focus of attention for filtering the region of interest (ROI) objects in the said image by estimating the ground region characterized by identifying smooth regions connected to bottom most part of the image; eliminating the non-ground objects based on their distance to ground; filtering the non-ROI objects based on the shape of such objects by computing the signal to noise ratio (SNR) which is a measure of regularity of the component based on its periodicity of its contour for each of such non-ROI objects; eliminating the non-vertical objects by computing inertial moment relative to x and y axis with respect to the centre of mass of such non-vertical objects; classifying the pedestrians in the analyzed frame of the image based their shape; and tracking the movement of the classified pedestrian using mean shift algorithm.

    摘要翻译: 一种成本有效的方法,用于通过使用设置在车辆上的近红外(IR)照相机拍摄的图像来检测,分类和跟踪存在于车辆前方的行人,所述方法包括:处理器实施步骤: 通过估计通过识别连接到图像的最底部的平滑区域来表征的地面区域来对所述图像中的感兴趣区域(ROI)对象进行滤波的注意; 根据地面距离消除非地面物体; 基于这些对象的形状,通过计算信噪比(SNR)来对非ROI对象进行过滤,所述信噪比(SNR)是基于其对于每个这样的非ROI对象的轮廓的周期性而对部件的规则性的度量; 通过相对于这种非垂直物体的质心计算相对于x和y轴的惯性力矩来消除非垂直物体; 根据其形状对分析的图像帧中的行人进行分类; 并使用均值偏移算法跟踪分类行人的运动。

    Shape classification method based on the topological perceptual organization theory
    2.
    发明授权
    Shape classification method based on the topological perceptual organization theory 有权
    基于拓扑知觉组织理论的形状分类方法

    公开(公告)号:US08732172B2

    公开(公告)日:2014-05-20

    申请号:US13142650

    申请日:2010-05-13

    IPC分类号: G06F7/00 G06F17/30

    摘要: A shape classification method based on the topological perceptual organization (TPO) theory, comprising steps of: extracting boundary points of shapes (S1); constructing topological space and computing the representation of extracted boundary points (S2); extracting global features of shapes from the representation of boundary points in topological space (S3); extracting local features of shapes from the representation of boundary points in Euclidean space (S4); combining global features and local features through adjusting the weight of local features according to the performance of global features (S5); classifying shapes using the combination of global features and local features (S6). The invention is applicable for intelligent video surveillance, e.g., objects classification and scene understanding. The invention can also be used for the automatic driving system wherein robust recognition of traffic signs plays an important role in enhancing the intelligence of the system.

    摘要翻译: 一种基于拓扑感知组织(TPO)理论的形状分类方法,包括以下步骤:提取形状边界点(S1); 构建拓扑空间并计算提取的边界点的表示(S2); 从拓扑空间中的边界点的表示中提取形状的全局特征(S3); 从欧几里德空间中的边界点的表示中提取形状的局部特征(S4); 通过根据全局特性的性能调整局部特征的权重,结合全局特征和局部特征(S5); 使用全局特征和局部特征的组合对形状进行分类(S6)。 本发明适用于智能视频监控,例如对象分类和场景理解。 本发明还可以用于自动驾驶系统,其中对交通标志的鲁棒识别在增强系统的智能方面起重要作用。

    Method for processing digital image with discrete wavelet transform and apparatus for the same
    3.
    发明申请
    Method for processing digital image with discrete wavelet transform and apparatus for the same 有权
    用离散小波变换处理数字图像的方法及其设备

    公开(公告)号:US20080056372A1

    公开(公告)日:2008-03-06

    申请号:US11513277

    申请日:2006-08-31

    CPC分类号: H04N19/63 G06K9/482

    摘要: An apparatus for processing an image with a discrete wavelet transform is provided. For one-dimensional circuit, the method changes conventional image data processing flow and uses common product of sequential calculations with respect to the time axis. The calculations for input data are not repeated so that components of the hardware architecture are minimized. For two-dimensional circuit, the method uses an external data scanning method to eliminate an external memory, transposing buffer, from a transforming circuit.

    摘要翻译: 提供一种用离散小波变换处理图像的装置。 对于一维电路,该方法改变了常规图像数据处理流程,并且使用了相对于时间轴的顺序计算的公共产物。 不重复输入数据的计算,从而使硬件架构的组件最小化。 对于二维电路,该方法使用外部数据扫描方法来消除来自变换电路的外部存储器,转置缓冲器。

    Perceptual similarity image retrieval
    4.
    发明申请
    Perceptual similarity image retrieval 有权
    感知相似图像检索

    公开(公告)号:US20030231806A1

    公开(公告)日:2003-12-18

    申请号:US10378160

    申请日:2003-02-28

    发明人: Vlad Troyanker

    IPC分类号: G06K009/54 G06K009/00

    摘要: A system and method indexes an image database by partitioning an image thereof into a plurality of cells, combining the cells into intervals and then spots according to perceptual criteria, and generating a set of spot descriptors that characterize the perceptual features of the spots, such as their shape, color and relative position within the image. The shape preferably is a derivative of the coefficients of a Discrete Fourier Transform (DFT) of the perimeter trace of the spot. The set of spot descriptors forms as an index entry for the spot. This process repeated for the various images of the database. To search the index, a key comprising a set of spot descriptors for a query image is generated and compared according to a perceptual similarity metric to the entries of the index. The metric determines the perceptual similarity that the features of the query image match those of the indexed image. The search results are presented as a scored list of the indexed images. A wide variety of image types can be indexed and searched, including: bi-tonal, gray-scale, color, nullreal scenenull originated, and artificially generated images. Continuous-tone nullreal scenenull images such as digitized still pictures and video frames are of primary interest. There are stand alone and networked embodiments. A hybrid embodiment generates keys locally and performs image and index storage and perceptual comparison on a network or web server.

    摘要翻译: 系统和方法通过将图像分割成多个单元来对图像数据库进行索引,将单元格组合成间隔,然后根据感知标准将点组合,并且生成表征点的感知特征的一组点描述符,例如 它们的形状,颜色和图像内的相对位置。 形状优选地是斑点的周边迹线的离散傅里叶变换(DFT)的系数的导数。 斑点描述符的集合形成为现场的索引条目。 该过程重复数据库的各种图像。 为了搜索索引,生成包括用于查询图像的一组点描述符的键,并根据感知相似性度量与索引的条目进行比较。 该度量确定查询图像的特征与索引图像的特征相关的感知相似性。 搜索结果表示为索引图像的得分列表。 可以索引和搜索各种图像类型,包括:双色调,灰度,色彩,“真实场景”起源和人为生成的图像。 主要感兴趣的是连续色调“真实场景”图像,如数字化静态图片和视频帧。 有独立和联网的实施例。 混合实施例在本地生成密钥并且在网络或web服务器上执行图像和索引存储以及感知比较。

    Method and apparatus for generating special-purpose image analysis algorithms
    5.
    发明申请
    Method and apparatus for generating special-purpose image analysis algorithms 失效
    用于生成专用图像分析算法的方法和装置

    公开(公告)号:US20020186882A1

    公开(公告)日:2002-12-12

    申请号:US10134157

    申请日:2002-04-25

    IPC分类号: G06K009/00

    摘要: One embodiment of the invention provides a process and related apparatus for obtaining quantitative data about a 2-dimensional, 3-dimensional image, or other dimensional image. For example, the invention is capable of classifying and counting the number of entities an image contains. Each entity comprises an entity, structure, or some other type of identifiable portion of the image having definable characteristics. The entities located within an image may have a different shape, color, texture, or other definable characteristic, but still belong to the same classification. In other instances, entities comprising a similar color, and texture may be classified as one type while entities comprising a different color, and texture may be classified as another type. An image may contain multiple entities and each entity may belong to a different class. Thus, the system embodying the invention may quantify image data according to a set of changing criteria and derive one or more classifications for the entities in the image. Once the image data is classified, the total number of entities in the image is calculated and presented to the user. Put simply, embodiments of the invention provides a way for a computer to determine what kind of entities (e.g., entities) are in an image and counts the total number of entities that can be visually identified in the image. Another aspect of the invention is that the information utilized during a training process may be stored and applied across different images.

    摘要翻译: 本发明的一个实施例提供一种用于获得关于二维,三维图像或其他尺寸图像的定量数据的方法和相关装置。 例如,本发明能够对图像包含的实体的数量进行分类和计数。 每个实体包括具有可定义特征的图像的实体,结构或其他类型的可识别部分。 位于图像内的实体可以具有不同的形状,颜色,纹理或其他可定义的特征,但仍属于相同的分类。 在其他情况下,包括相似颜色和纹理的实体可以被分类为一种类型,而包含不同颜色的实体和纹理可以被分类为另一种类型。 图像可以包含多个实体,并且每个实体可以属于不同的类。 因此,体现本发明的系统可以根据一组改变的标准来量化图像数据,并导出图像中的实体的一个或多个分类。 一旦对图像数据进行分类,就会计算出图像中的实体总数并呈现给用户。 简而言之,本发明的实施例提供了一种计算机确定图像中的实体(例如,实体)是什么样的方式,并且对图像中可以被视觉识别的实体的总数进行计数。 本发明的另一方面是可以在训练过程中使用的信息被存储并应用于不同的图像。

    System and method for incorporating segmentation boundaries into the
calculation of fractal dimension features for texture discrimination
    6.
    发明授权
    System and method for incorporating segmentation boundaries into the calculation of fractal dimension features for texture discrimination 失效
    用于将分割边界并入到用于纹理鉴别的分形维数特征的计算中的系统和方法

    公开(公告)号:US5671294A

    公开(公告)日:1997-09-23

    申请号:US308112

    申请日:1994-09-15

    IPC分类号: G06T7/40 G06K9/62 G06K9/74

    摘要: Image analysis is performed by defining segmentation boundaries within an image by using wavelet theory or some other suitable method. Such boundaries can be incomplete, irregular, and/or multi-valued. The segmentation boundaries are then incorporated into feature calculations related to fractal dimensions for each pixel using a diffusion related method or a Dijkstra potential related method. These features are then used in statistical techniques to distinguish among textures or classes of interest. The system performing the image analysis is trained (or supervised) on data from different classes within an image or images. This enables the system to then later identify these classes in different images. The system can be used for Computer Aided Diagnosis (CAD) of mammograms or other medical imagery.

    摘要翻译: 通过使用小波理论或其他一些合适的方法在图像内定义分割边界来执行图像分析。 这种边界可能是不完整的,不规则的和/或多重的。 然后使用扩散相关方法或Dijkstra势相关方法将分割边界并入与每个像素的分形维数相关的特征计算。 然后将这些特征用于统计技术以区分感兴趣的纹理或类别。 执行图像分析的系统针对图像或图像内不同类别的数据进行训练(或监督)。 这使得系统随后能够在不同的图像中识别这些类。 该系统可用于乳房X线照片或其他医学图像的计算机辅助诊断(CAD)。

    Image generation using neural networks

    公开(公告)号:US09940551B1

    公开(公告)日:2018-04-10

    申请号:US15185655

    申请日:2016-06-17

    申请人: Google Inc.

    IPC分类号: G06K9/00 G06K9/62 G06K9/48

    摘要: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for image generation using neural networks. In one of the methods, an initial image is received. Data defining an objective function is received, and the objective function is dependent on processing of a neural network trained to identify features of an image. The initial image is modified to generate a modified image by iteratively performing the following: a current version of the initial image is processed using the neural network to generate a current objective score for the current version of the initial image using the objective function; and the current version of the initial image is modified to increase the current objective score by enhancing a feature detected by the processing.

    IMAGE PROCESSING DEVICE AND METHODS FOR PERFORMING AN S-TRANSFORM
    10.
    发明申请
    IMAGE PROCESSING DEVICE AND METHODS FOR PERFORMING AN S-TRANSFORM 审中-公开
    图像处理装置和用于执行S变换的方法

    公开(公告)号:US20150125080A1

    公开(公告)日:2015-05-07

    申请号:US14360299

    申请日:2012-11-21

    IPC分类号: G06K9/52 G06K9/48

    摘要: An image processing device and methods for performing an S-transform (ST) are provided herein. An example method of generating a compressed form of values of a one-dimensional ST for a time series and generating an approximate form of ST is provided herein. Additionally, an example method of determining local spectrum at a pixel is provided herein. Further, an example method of determining ST magnitudes and statistics in a region of interest (ROI) is provided herein.

    摘要翻译: 本文提供了一种用于执行S变换(ST)的图像处理装置和方法。 本文提供了生成时间序列的一维ST的压缩形式的值并生成ST的近似形式的示例性方法。 此外,本文提供了确定像素处的局部光谱的示例性方法。 此外,提供了确定感兴趣区域(ROI)中的ST幅度和统计量的示例方法。