Abstract:
A low cost DAB multichannel receiver comprising a simplified buffering method for buffering content segments from multiple streams contained within the DAB channel, where the receiver enables the listener to navigate buffered content segments from multiple streams within the DAB channel while enabling the broadcaster to control the timeshift of commercial content to the receiver output stream. The receiver's buffered content grows over time and is cleared when tuning away from the channel, thus encouraging listeners desiring to tune in to new content to instead navigate to new buffered segments. Broadcaster control of the listener experience may be enabled by setting content control fields which are observed in the broadcast by the multichannel receivers. Additional embodiments are disclosed.
Abstract:
A broadcast receiving apparatus includes a reception unit, sound controlling unit, and determination unit. The reception unit receives a signal of an analog broadcast and a signal of a digital broadcast having the same broadcast content. The sound controlling unit performs, when an output of the broadcast receiving apparatus switched into the analog broadcast from the digital broadcast, a switching control of switching the output into the analog broadcast from the digital broadcast so that an acoustic characteristic of the output digital broadcast gradually approaches an acoustic characteristic of the analog broadcast based on a reception intensity of the signal of the analog broadcast. The determination unit determines, after the sound controlling unit starts the switching control, whether or not the switching control performed by the sound controlling unit is to be continued, based on reception state of the signal of the digital broadcast.
Abstract:
A method for processing a digital audio broadcast signal includes: separating an analog audio portion and a digital audio portion of the digital audio broadcast signal; determining the loudness of the analog audio portion and the digital audio portion over a first short time interval; using the loudness of the analog and digital audio portions to calculate a short term average gain; determining a long term average gain; converting one of the long term average gain or the short term average gain to dB; if an output has been blended to digital, adjusting a digital gain parameter by a preselected increment to produce a digital gain parameter; if an output has not been blended to digital, setting the digital gain parameter to the short term average gain; providing the digital gain parameter to an audio processor; and repeating the above steps using a second short time interval.
Abstract:
Certain embodiments herein are directed to optimized decoding of in-band on-channel (IBOC) services, such as audio, traffic, and data associated with HD Radio™. Service information, such as service boundaries for one or more segments associated with IBOC services, may be identified and formatted for transmission to a receiver device. The receiver device may use the service boundaries to select or filter segments associated only with a service of interest from a bit stream of segments associated with one or more other services, according to one embodiment.
Abstract translation:本文中的某些实施例涉及带内在线(IBOC)服务(例如音频,业务和与HD Radio TM相关联的数据)的优化解码。 服务信息,例如与IBOC服务相关联的一个或多个段的服务边界,可以被识别和格式化以便传输到接收机设备。 根据一个实施例,接收机设备可以使用服务边界来从与一个或多个其他服务相关联的段的比特流中选择或过滤与感兴趣的服务相关联的段。
Abstract:
A method for detecting the digital quality of a radio signal includes: receiving a radio signal including an analog modulated portion; digitally sampling an analog modulated portion of the radio signal to produce a plurality of samples; using a ratio between an average magnitude and an RMS magnitude of a block of the samples to compute an analog signal quality metric. Receivers that implement the method are also provided.
Abstract:
A method of block deinterleaving data received at a digital radio broadcast receiver is described. The method includes providing a block of memory having n×k addresses, wherein the block comprises a single table, receiving a digital radio broadcast signal at the receiver, and demodulating the digital radio broadcast signal into a plurality of interleaved data units. For at least one series of n×k data units a pointer step size is determined, and for each data unit in the series, an address in the block is calculated based on the pointer step size, and an output data unit is read from the block at the address, such that said output data units represent block deinterleaved data units. An input data unit from the plurality of interleaved data units is then written to the block at the address. Associated systems and computer readable storage media are presented.
Abstract:
A method for detecting the digital quality of a radio signal includes: receiving a radio signal including a digital portion modulated by a series of symbols each including a plurality of samples; computing correlation points between endpoint samples in cyclic prefix regions of adjacent symbols; and using the correlation points to produce a digital signal quality metric. Receivers that implement the method are also provided.
Abstract:
A method and system for offline processing alert messages (AR) on a digital radio broadcast receiver is described. A digital radio broadcast signal is received at the digital radio broadcast receiver. AR receivers will constantly look for AR alerts at a periodic interval by monitoring the station information service (SIS) on Primary IBOC Data Service (PIDS) channel to maximize the battery life at the same time achieving a reasonable latency in receiving AR alerts.
Abstract:
A method is provided that comprises tuning a radio system to a frequency band that contains a locally-broadcast terrestrial radio signal. The locally-broadcast terrestrial radio signal comprising a main signal component and a side data component is thereby received. In response to receiving the locally-broadcast terrestrial radio signal a determination is made as to a permissible time for processing the side data component using a time slot schedule. The side data component is processed at the permissible time. A message corresponding to the side data component is outputted to an output device. In some instances, the side data component includes the message. In other instances, the method further includes searching a message lookup list using a code included in the side data component. When a stored code is found that matches the code, the message corresponding to the matching stored code is outputted.
Abstract:
Systems and methods for increasing transmission bandwidth efficiency by the analysis and synthesis of the ultimate components of transmitted content are presented. To implement such a system, a dictionary or database of elemental codewords can be generated from a set of audio clips. Using such a database, a given arbitrary song or other audio file can be expressed as a series of such codewords, where each given codeword in the series is a compressed audio packet that can be used as is, or, for example, can be tagged to be modified to better match the corresponding portion of the original audio file. Each codeword in the database has an index number or unique identifier. For a relatively small number of bits used in a unique ID, e.g. 27-30, several hundreds of millions of codewords can be uniquely identified. By providing the database of codewords to receivers of a broadcast or content delivery system in advance, instead of broadcasting or streaming the actual compressed audio signal, all that need be transmitted is the series of identifiers along with any modification instructions to the identified codewords. After reception, intelligence on the receiver having access to a locally stored copy of the dictionary can reconstruct the original audio clip by accessing the codewords via the received IDs, modify them as instructed by the modification instructions, further modify the codewords either individually or in groups using the audio profile of the original audio file (also sent by the encoder) and play back a generated sequence of phase corrected codewords and modified codewords as instructed. In exemplary embodiments of the present invention, such modification can extend into neighboring codewords, and can utilize either or both (i) cross correlation based time alignment and (ii) phase continuity between harmonics, to achieve higher fidelity to the original audio clip.