Abstract:
The disclosure relates to a sub-millimeter backward wave oscillator. More specifically, the disclosure relates to a miniature backward wave oscillator having a biplanar interdigital circuit. In one embodiment the interdigital circuit includes diamond and is coated with an electro-conductive material.
Abstract:
In a crossed-field amplifier tube, an input section of slow-wave circuit is part of the cathode electrode. An output section of slow-wave circuit is part of the anode electrode. The anode circuit is axially displaced from the cathode circuit in the direction of drift of the electron stream so that a non-propagating section of the anode faces at least a part of the propagating cathode circuit.
Abstract:
In a travelling-wave tube for very high frequencies the slow-wave circuit is formed of four metal combs having teeth pointed toward the electron beam. The combs are arranged in two pairs. The teeth of the two combs in each pair extend inward from opposite sides of the beam and are axially aligned to form the electrical equivalent of a half-wave bar or ladder structure. They may or may not be joined at the tips because those are low-current points. The teeth of one pair are at right angles to those of the other pair and are displaced axially to interleave with them. Each comb is preferably made from a single piece of copper to provide better dimensional precision, low circuit loss, mechanical durability and high thermal capability.
Abstract:
The present invention relates in general to reactively loaded interdigital slow wave circuits and, more particularly, to such circuits provided with elongated reactive loading elements to provide a more uniform intensity of the electric fields of the circuit in the interaction region, whereby the interaction impedance of the circuit is increased. Such improved circuits are especially useful for forward wave amplifiers both of the crossed field and O-type to provide increased efficiency and power output.