Abstract:
Disclosed is an apparatus and method for canceling an interference signal in a packet data receiver for a packet data communication system in which data is transmitted and received over a packet data channel and a packet data control channel. The packet data channel is time-synchronized with the packet data control channel. A buffer temporarily stores a signal on the packet data channel, combined after being received through multiple paths, until the packet data control channel is decoded. An interference cancellation controller analyzes packet data control channel information obtained by decoding the packet data control channel, and outputs an interference cancellation command signal only when it is determined that effective packet data to be received exists in a current time slot. An interference cancellation section receives the packet data channel signal output from the buffer, and cancels an interference signal from the packet data channel signal only when the interference cancellation command signal is received.
Abstract:
There is provided a multi-mode communication system which is operable according to different operating modes, such as GSM and WCDMA. The multi-mode communication system includes first and second switching units, a delta-sigma modulator, an analog-to-digital converter, sequential convolution units and a selection unit. The delta-sigma modulator samples an analog signal, which is inputted through the first switching unit in one mode, into 1-bit digital signal. In another mode, the analog-to-digital converter samples an analog signal, which is inputted through the first switching unit into an n-bit digital signal. The sequential convolution units multiply filter factors with the output of the delta-sigma modulator, which is inputted through the second switching unit at the first mode, and multiply PN codes by the output of the analog-to-digital converter, which is inputted through the second switching unit at the second mode, to generate WCDMA output waveforms. The selection unit delays the outputs of the sequential convolution units by a predetermined time at the GSM mode to restore GSM output waveforms. Accordingly, the multi-mode communication system is operable according to multimodes, such as GSM mode and WCDMA mode.
Abstract:
A reconfigurable chip level equalizer having circuitry that restores signal orthogonality and eliminates channel interference for a wireless transmitted signal. In at least some embodiments, the reconfigurable chip level equalizer comprises two or more adaptive equalizers, a plurality of operational blocks that interconnect the two or more adaptive equalizers, and a control mechanism that configures the two or more adaptive equalizers and operational blocks according to different signal delay profiles.
Abstract:
A device tracks multipath components of a spread-spectrum signal. The spread-spectrum signal has an associated chip code sequence. The device receives multipath components of the spread-spectrum signal. A first and second plurality of multipath components are despread about a center code phase. The first plurality is a sequence of multipath components prior to the center code phase and the second plurality is a sequence of multipath components after the center code phase. A first and second combined energy is determined from the first and second plurality of multipath components. A tracking delay is calculated based on a difference between the first and the second combined energies. The center code phase is adjusted by said tracking delay.
Abstract:
A code-division-multiple-access (CDMA) system employing spread-spectrum modulation. The CDMA system has a base station (BS), and a plurality of subscriber units (SUs). The signals transmitted between the BS and SU use spread-spectrum modulation. The improvement method for maintaining control of power from an SU to a BS comprises sending from the subscriber unit, using spread-spectrum modulation, a SU-spreading code, and detecting, at the BS, the SU-spreading code from the SU. In response to detecting the SU-spreading code at the BS, a BS-spreading code is sent to the SU, using spread-spectrum modulation. At the SU, if the BS-spreading code is detected, then transmit power of the SU is reduced. If the BS-spreading code is not detected at the SU, then transmit power of the SU is increased.
Abstract:
A method of searching digital communication signals in a system includes combining a plurality of channel measurements, providing output of the combining of channel measurements as an added input to the plurality of channel measurements, and acquiring a signal symbol based on results from the combining of channel measurements without addressing all timing hypothesis individually via a correlation operation.
Abstract:
The invention is a CDMA system which achieves improved performance by virtue of being adaptive to the speed of each mobile unit in the system. A speed estimator for each mobile unit can be located in the mobile unit itself and/or in the base station. The speed estimate is used to modify a variety of parameters within processing fingers in the mobile unit and in the base station, including the accumulation period of certain accumulators and the time constant for loop filters. The speed estimate also influences assignment, by a control unit, of path delays to respective processing fingers for despreading. Furthermore, the speed estimate is used by the control unit to decide whether or not finger outputs are to be combined by a diversity combiner in the receiver. In addition, the speed estimate is used to optimize the closed-loop power control target and the energy of a transmitted pilot. The speed estimate is also used for allocation of pooled finger and searcher resources, as well as data transmission rate negotiation and interleaver/deinterleaver length configuration.
Abstract:
A processor (216) time-shares correlators (206) to process (402) pilot channels for a plurality of branches to derive pilot symbols for each of the plurality of branches before processing control and data channels. The processor and the correlators cooperate to determine (404) from the pilot symbols a timing estimate for each of the plurality of branches. A signal quality estimator (210) determines (406) from the pilot symbols a signal quality for each of the plurality of branches. Subsequently, the processor cooperates with the correlators to process (408) the control and data channels of the plurality of branches, in an order determined by a plurality of branch attributes including at least one of the signal quality and the timing estimate determined for each of the plurality of branches.
Abstract:
A multiple access, spread-spectrum communication system processes a plurality of information signals received by a Radio Carrier Station (RCS) over telecommunication lines for simultaneous transmission over a radio frequency (RF) channel as a code-division-multiplexed (CDM) signal to a group of Subscriber Units (SUs). The RCS receives a call request signal that corresponds to a telecommunication line information signal, and a user identification signal that identifies a user to receive the call. The RCS includes a plurality of Code Division Multiple Access (CDMA) modems, one of which provides a global pilot code signal. The modems provide message code signals synchronized to the global pilot signal. Each modem combines an information signal with a message code signal to provide a CDM processed signal. The RCS includes a system channel controller is coupled to receive a remote call. An RF transmitter is connected to all of the modems to combine the CDM processed signals with the global pilot code signal to generate a CDM signal. The RF transmitter also modulates a carrier signal with the CDM signal and transmits the modulated carrier signal through an RF communication channel to the SUs. Each SU includes a CDMA modem which is also synchronized to the global pilot signal. The CDMA modem despreads the CDM signal and provides a despread information signal to the user. The system includes a closed loop power control system for maintaining a minimum system transmit power level for the RCS and the SUs, and system capacity management for maintaining a maximum number of active SUs for improved system performance.
Abstract:
A base station for controlling transmission power during the establishment of a communication channel utilizes the reception of a short code during initial power ramp-up. The short code is a sequence for detection by the base station which has a much shorter period than a conventional access code. The ramp-up starts from a power level that is lower than the required power level for detection by the base station. The power of the short code is quickly increased until the signal is detected by the base station. Once the base station detects the short code, it transmits an indication that the short code has been detected.