Abstract:
A plate making method of a lithographic printing plate comprising (1) preparing a lithographic printing plate precursor capable of forming an image with a semiconductor laser emitting an infrared ray having a wavelength from 760 to 1,200 nm which comprises a support and an image-recording layer containing a cyanine dye, a diphenyl iodonium salt or triphenyl sulfonium salt which may have a substituent on the phenyl group, a radical polymerizable compound and a polymer fine particle having a polyoxyalkylene chain in its side chain in this order, (2) placing a lith film on the lithographic printing plate precursor and reducing pressure so that the lith film is closely adhered to the lithographic printing plate precursor, (3) conducting UV exposure, and (4) conducting on-press development.
Abstract:
A lithographic printing plate precursor includes: a support; and an image-recording layer containing (A) an infrared absorbing agent, (B) a radical polymerization initiator, (C) a polymerizable compound and (D) an epoxy compound having a molecular weight of 1,000 or less.
Abstract:
The invention provides a planographic printing plate precursor having at least: a support; and an image recording layer that is provided on the support, the image recording layer comprising: an infrared ray absorbing agent (A); a polymerization initiator (B); a polymerizable compound (C); and a compound (D) represented by the following Formula (I). In Formula (I), at least one of R1 to R3 represents —(CH2CH2O)n—R4, while the remainder of R1 to R3 respectively independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or R5—COOH; R4 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms; n represents an integer of 1 to 20; and R5 represents an alkylene group having 1 to 6 carbon atoms. The invention further provides a printing method using the planographic printing plate precursor and performing on-press development.
Abstract:
A method of processing an on-press developable lithographic printing plate with ink and/or fountain solution is described. The plate comprises on a substrate a photosensitive layer which is either capable of hardening (negative-working) or solubilization (positive-working) upon exposure to a laser, the non-hardened or solubilized areas of the photosensitive layer being soluble or dispersible in ink and/or fountain solution. The plate is exposed with a laser, heated to an elevated temperature, and then developed with ink and/or fountain solution on a lithographic press. The laser exposed plate is preferably heated by passing through a heating device or while mounted on a lithographic press before on-press development.
Abstract:
A lithographic printing plate precursor comprising a support and an image recording layer capable of drawing an image by exposure with an infrared laser, wherein the image recording layer contains (A) an infrared absorbent and (B) an iodonium salt represented by the following formula (1): wherein Ar1 and Ar2 each represents a benzene ring which may have a substituent, provided that two benzene rings are differing in the substituent from each other and a total of Hammett's σ values of substituents on at least one of the benzene rings is a negative value, and Z represents a counter anion.
Abstract:
A backside coating is applied to lithographic printing plate precursors and this coating provides sufficient protection so that adjacent precursors are not scratched or otherwise damaged when stacked. The backside coating is readily dissolved during processing or development at a pH of at least 6.5 after the precursors are imaged.
Abstract:
A compound having, in its molecule, a polymethine chain structure containing a partial structure represented by the following formula (1-1), and an image forming material containing the same. In the formula (1-1), R1, R2, R3, R4, and X each independently represent a hydrogen atom, a halogen atom, or a monovalent organic group. The image forming material is useful as the image recording layer of a planographic printing plate precursor.
Abstract:
A method of processing an on-press developable lithographic printing plate involves the removal of overcoat by brushing or rubbing while in contact with water or an aqueous solution after imagewise exposure and before on-press development. The plate comprises a substrate, an on-press ink and/or fountain solution developable photosensitive layer, and a water soluble or dispersible overcoat. Preferably, the overcoat is incapable of being completely removed with ink and/or fountain solution on a lithographic press during roll up. Such a method allows the use of more durable overcoat for on-press developable plate.
Abstract:
A lithographic printing plate precursor is provided and has a porous aluminum support, (1) a layer containing a water-soluble polymer resin having a hydrophilic substituent adsorbable to a surface of the porous aluminum support and a sulfonic acid, and (2) an image recording layer from which unexposed areas can be removed by supplying an oil-based ink and an aqueous component thereonto on a printing machine without being subjected to development after exposure. The layer containing the water-soluble polymer resin, which has come in contact with the oil-based ink and the aqueous component, has a sulfonic acid group left therein.
Abstract:
A color-forming photosensitive composition contains: a cyanine dye having at least two polymerizable groups selected from an acryloyl group, a methacryloyl group and a vinyl group; a radical generator; and a monomer having an ethylenically unsaturated group.