Abstract:
The invention relates to a method for sintering aluminium-based sintered parts which are, initially, guided with the aid of a transport system T through a de-binding area (3) before being guided through followed by a sintering area (2) and finally being guided through a cooling area (4). Inert gas atmosphere prevails in the sintering area (2), provided with an oxygen content, corresponding to a thawing point of, maximum, 40° C. The sintered parts (23) are heated to the required sintering temperature of 560-620° C., by means of convection, whereby the inert gas atmosphere is accordingly heated, flowing around said sintered parts in a corresponding manner.
Abstract:
A nitrogen containing metal powder with a large specific surface area, and containing a suitable quantity of nitrogen dispersed uniformly within the metal is produced with good productivity, and provides a solid electrolytic capacitor with a high capacitance, minimal leakage current, and excellent long term reliability. This nitrogen containing metal powder has a ratio W/S between the nitrogen content W nullppmnull of the powder, and the specific surface area S nullm2/gnull, as measured by a BET method, that falls within a range from 500 to 3000. This type of powder can be produced by a process in which a metal salt containing the metal is reacted with a reducing agent and undergoes reduction within a diluent salt, thereby generating the metal, wherein a nitrogen containing gas is introduced into the space contacting the reaction melt comprising the metal salt, the reducing agent and the diluent salt, thereby generating the metal and incorporating the nitrogen within the metal.
Abstract:
A non-aqueous electrolyte secondary battery containing an alloy particle capable of absorbing and desorbing lithium in the negative electrode has a short cycle life and is insufficient in high-rate discharge characteristics, since the alloy particle is pulverized during charge/discharge cycles. In order to solve this problem, a negative electrode is employed, which comprises an alloy particle containing: at least two selected from the group consisting of metal elements and semimetal elements; oxygen; and nitrogen. It is preferred that the alloy particle have a phase A capable of electrochemically absorbing and desorbing lithium ion and a phase B having lithium ion conductivity or lithium ion permeability and that the phase B contain larger amounts of oxygen and nitrogen than the phase A.
Abstract:
A titanium based carbonitride alloy containing Ti, Nb, W, C, N and Co. The alloy also contains, in addition to Ti, 9-14 at % Co with only impurity levels of Ni and Fe, 1-
Abstract:
A process of producing a zinc or zinc alloy powder (4) for batteries which comprises dropping molten zinc or a molten zinc alloy to form a molten metal droplets stream (1) and striking an atomizing medium jet (3) emitted from a nozzle (2) against the molten metal stream (1) at right angles to atomize the molten zinc or the molten zinc alloy, wherein two or more the nozzles are arranged in parallel to each other, the orifice of each of the nozzles has a V-shaped, U-shaped, X-shaped or arc-shaped cross-section, the atomizing medium is air or an inert gas, two or more the molten metal streams have at least two different flow rates selected from a range 0.04 to 0.25 kg/sec, and two or more the atomizing medium jets have at least two different atomizing pressures selected from a range 4 to 9 kg/cm2.
Abstract translation:一种生产用于电池的锌或锌合金粉末(4)的方法,包括滴加熔融锌或熔融锌合金以形成熔融金属液滴流(1)并且撞击从喷嘴(2)发射的雾化介质射流 )对熔融金属流(1)成直角,以雾化熔融锌或熔融锌合金,其中两个或更多个喷嘴彼此平行地布置,每个喷嘴的孔具有V形, U形,X形或弧形横截面,雾化介质是空气或惰性气体,两个或更多个熔融金属流具有选自0.04至0.25kg / sec的至少两种不同流速, 并且两个或更多个雾化介质射流具有选自4至9kg / cm 2的至少两种不同的雾化压力。
Abstract:
An anode support formed of a three-dimensional interconnected porous nickel plaque fabricated by sintering a bed of pure metallic nickel powder particles.
Abstract:
A method for the manufacture of a three-dimensional object includes the steps of forming a mixture that contains a binder, a wetting agent, and a least one of aluminum or a first aluminum-base alloy into a green composite, removing the binder from said green composite forming a porous preform structure and infiltrating the porous preform structure with a molten second aluminum base alloy to form the three-dimensional object with near theoretical density. The wetting agent assists in wetting during infiltration. The green composite may be formed by an additive process such as computer aided rapid prototyping, for example selective laser sintering. The method facilitates the rapid manufacture of aluminum components by an inexpensive technique that provides high dimensional stability and high density.
Abstract:
The present invention relates to the fabrication of low cost, in situ, porous metallic, ceramic and cermet foam structures having improved mechanical properties such as energy absorption and specific stiffness. Methods of fabricating the structures from compositions including ceramic and/or metallic powders are provided. The flowable compositions also include an immiscible phase that results in pores within the final structure. Furthermore, the structures may be shaped to have external porosity, such as with mesh-like structures.
Abstract:
A non-aqueous electrolyte secondary battery containing an alloy particle capable of absorbing and desorbing lithium in the negative electrode has a short cycle life and is insufficient in high-rate discharge characteristics, since the alloy particle is pulverized during charge/discharge cycles. In order to solve this problem, a negative electrode is employed, which comprises an alloy particle containing: at least two selected from the group consisting of metal elements and semimetal elements; oxygen; and nitrogen. It is preferred that the alloy particle have a phase A capable of electrochemically absorbing and desorbing lithium ion and a phase B having lithium ion conductivity or lithium ion permeability and that the phase B contain larger amounts of oxygen and nitrogen than the phase A.
Abstract:
The present invention relates to the extrusion freeform fabrication of low cost, in situ, metallic foam components having oriented microstructures and improved mechanical properties such as energy absorption and specific stiffness. The present invention relates to the freeform fabrication of metallic foams to form parts having complex geometry that demonstrate superior mechanical properties and energy absorbing capacity.