Abstract:
Methods, apparatuses and computer-readable media are described that configure wireless circuitry of a wireless device. The wireless device establishes a connection to a first wireless network using first and second receiving signaling chains. The wireless device obtains a configuration processing delay time for the first wireless network and sends a first channel status report having a rank indicator value of one before starting a tune-away event at a time based on the obtained configuration processing delay time. The wireless device reconfigures at least one of the radio frequency signaling chains to receive signals from a second wireless network during the tune-away event. The wireless device subsequently sends a second channel status report having a rank indicator value greater than one before ending the tune-away event and reconfiguring the at least one of the radio frequency receive signaling chains back to the first wireless network.
Abstract:
Apparatus and methods for implementing “intelligent” receive diversity management in e.g., a mobile device. In one implementation, the mobile device includes an LTE-enabled UE, and the intelligent diversity management includes selectively disabling receive diversity (RxD) in that device upon meeting a plurality of criteria including (i) a capacity criterion, and (ii) a connectivity criterion. In one variant, the capacity criterion includes ensuring that an achievable data rate associated with a single Rx (receive) chain is comparable to that with RxD.
Abstract:
A method for determining whether an acknowledgement received by a user equipment from an external device is a forced acknowledgement. The method including transmitting a set of data stored in an uplink buffer to an external device, receiving an acknowledgement from the external device, determining if the acknowledgement received from the external device was a forced acknowledgement and flushing out an uplink buffer if determined that the acknowledgement was not a forced acknowledgement. The determining the acknowledgement is a forced acknowledgment being based on whether an uplink retransmission collides with one or more scheduled transmission times, a Physical Hybrid-ARQ Indicator Channel (PHICH) falls between gap measurements and an uplink retransmission collides with one of the gap measurements or a TTI bundling retransmission collides with a gap measurement. If the acknowledgement is not a forced acknowledgment, a set of data stored in the uplink buffer is retransmitted to the external device.
Abstract:
A wireless communication system is presented for future scheduling of secondary component carrier(s) (SCC) during carrier aggregation in LTE wireless communications. A primary component carrier in a first subframe can be used to indicate at what future subframe SCC data may exist for the mobile device (e.g., UE, etc.). The UE can then leave off all SCC receive circuitry until the future subframe, when it can turn on all needed SCC receive circuitry to receive the SCC data. After receiving the SCC data, the UE can again power off the SCC receive circuitry.
Abstract:
Methods, apparatuses and computer readable media are described that configure wireless circuitry in a wireless communication device. The wireless communication device establishes a connection to a wireless network using wireless circuitry that includes a first radio frequency receive signal chain and a second radio frequency receive signal chain. The wireless communication device monitors uplink and downlink traffic activity communicated between the wireless communication device and the wireless network and measures downlink radio frequency receive signal conditions at the wireless communication device. The wireless communication device reconfigures the wireless circuitry to enable receive diversity or to disable receive diversity at the wireless communication device based on the monitored traffic activity and the measured downlink radio frequency receive signal conditions.
Abstract:
A method for improving reception by a wireless communication device is provided. The method can include a wireless communication device using a first RF chain to support a connection to a network via a first frequency band. The method can further include the wireless communication device tuning a second RF chain, which is not being actively used for carrier aggregation, to a second frequency band. The method can additionally include the wireless communication device measuring, via the second RF chain, a signal characteristic of the second frequency band. The method can also include the wireless communication device adjusting a configuration of the first RF chain based at least in part on the measured signal characteristic.
Abstract:
Various embodiments are disclosed of a method and apparatus for fast communication recovery in wireless mobile devices arranged to perform dual network radio resource management. In one embodiment, a wireless mobile device includes a transceiver configured to communicate with each of first and second networks. After establishing and maintaining a link with the first network, the wireless mobile device may tune a transceiver to the second network to monitor for traffic, subsequently tuning back to the first network. After turning the transceiver back to the first network, the wireless mobile device may perform one or more attempts to restore the link to the first network. The number of attempts to restore the link is dependent upon an amount of time the transceiver is tuned to the second network.
Abstract:
The present application relates to devices and components including apparatus, systems, and methods for employing subnetworks to communicate with cellular networks.
Abstract:
This disclosure relates to techniques for reducing latency in a high-propagation-delay wireless communication system. A user equipment device (UE) may transmit to abase station (BS) a first buffer status report (BSR) indicating an amount of uplink data buffered by the UE for transmission to the BS, and may subsequently transmit to the BS a first BSR update message indicating that an additional amount of uplink data has been buffered by the UE subsequent to transmission of the first BSR. The first BSR update message may be transmitted prior to expiration of a timer authorizing transmission of a second BSR following the first BSR. The UE may receive from the BS an uplink grant allocating resources for transmission of at least a portion of the uplink data buffered by the UE. The uplink grant may have a size based on the first BSR and the first BSR update message.
Abstract:
Systems, methods, and processors are provided for supporting a distributed computing framework. In one example, a wireless communication device is configured to act as a distributed computing control node (ContN), the wireless communication device including a memory and a processor coupled to the memory. The processor is configured to, when executing instructions stored in the memory, cause the device to receive respective registration messages from respective wireless communication devices. The registration messages include registration information indicating whether a respective wireless communication device acts as an offload node (OffN) for distributed computing or a compute node (CompN) for distributed computing. The processor is configured to store the registration information in a resource repository and, based on the registration information of the respective wireless communication devices, transmit a resource availability message indicating available distributed computing resources to wireless communication devices acting as OffNs.