Abstract:
The present invention provides methods, kits, and compositions for purifying HDL molecules from a sample (e.g., blood sample) using HDL tagging molecules comprising an HDL lipophilic core binding peptide (e.g., portion of ApoA1) and an affinity tag. The present invention also provides methods, kits, and compositions for detecting non-fragmented ApoA1 with mass spectrometry. The present invention further provides methods, kits, and compositions for tagging HDL molecules in a sample with detectably labeled ApoA1 molecules such that the ratio of detectably labeled ApoA1 molecules to native ApoA1 proteins may be determined.
Abstract:
Provided herein are methods, systems, and compositions for detecting one or more HDL-associated proteins (e.g., ApoC3; ApoC3 and ApoA1; ApoC3 and SAA1/2; or proteins in Biomarker Panels 1-30) in a sample from a subject with, or suspected of having, cardiovascular disease (CVD) or other HDL related disease. In certain embodiments, such methods, systems, and compositions are used to determine the approximate risk of CVD (or other disease) for a subject, and/or the approximate cholesterol efflux capacity (CEC) of a sample.
Abstract:
Provided herein are compositions, systems, and methods for extracting and detecting at least one HDL-associated protein (e.g., ApoA1) from a sample (e.g., plasma or serum sample). In certain embodiments, a strong organic acid and hydrophilic organic solvent are mixed with the sample; after centrifugation, the supernatant is transferred to a second container where it is mixed with a non-polar organic solvent; after centrifugation, the lower aqueous layer is transferred to a third container; and then at least a portion of the transferred aqueous layer is subjected to a detection assay such that at least one HDL-associated protein is detected.
Abstract:
As patient video images are captured in a lab, they are converted into an uncompressed data set and stored locally on a hospital site server, where they are immediately viewable by diagnosticians in the hospital. The hospital site server generates a plurality of compressed data sets for use by the Internet Data Center. Additionally, the uncompressed data set and a plurality of compressed data sets are stored permanently on a centralized Internet Data Center, from which they can be searched out and displayed by any client device running web-browser software. A client is provided with immediate access to the uncompressed images when pausing and requesting the images of interest from the server. The patient video images are automatically delivered to any authorized Clinical Research Organizations, they are delivered back to the treating hospital when the patient returns for subsequent visits, and are viewable through in-hospital viewing stations over a private high-speed network.
Abstract:
The invention provides novel methods for selecting an optimal diet and exercise regimen for a patient based on the consideration of several factors, including low density lipoprotein (LDL) and high density lipoprotein (HDL) subclass levels. Furthermore, the invention provides novel methods for treating a patient with cardiovascular disease (CVD) or at risk of developing CVD through selection of an optimal diet and exercise regimen, based on the measurement of risk factors, including LDL and HDL subclass levels.
Abstract:
The invention provides a system that determines if a patient has Metabolic Syndrome, and in response provides a disease-management program that helps reduce medical risks associated with this malady. The system features a device configured to collect glucose information and blood pressure information, and then transmit this information to a central computer system. The system also includes a database configured to receive triglyceride information and cholesterol information from an external blood test, and a central computer system featuring: 1) a communication interface configured to communicate with the device to receive glucose and blood pressure information and with the database to receive triglyceride and cholesterol information; 2) a user interface configured to accept patient information; and 3) a processor configured to operate an algorithm that processes the glucose, blood pressure, triglyceride, cholesterol, and patient information to determine if the patient has Metabolic Syndrome.
Abstract:
A method and system for generating electrocardiogram reports allows for the editing of features in the electrocardiogram interpretation process. This improves the accuracy of machine interpretation of the ECG data thereby facilitating the analysis and generation of the final report by the physician. The present method and system are most useful in host-based ECG interpretation systems where the physician accesses the ECG data at a workstation including a machine interpretation that is generated typically at the ECG cart. The physician is then provided with the ability to modify the features in the ECG data and generate a new host-based interpretation based on the original ECG data and the features specified by the physician.
Abstract:
The invention provides a method for identifying patients with normal NCEP lipid levels who are in need of treatment for cardiovascular disease comprising measuring one or more LDL or HDL particle subclass levels and identifying abnormal LDL or HDL subclass levels. LDL III a+b and HDL 2b are preferred subclasses.
Abstract translation:本发明提供了一种用于鉴定需要治疗心血管疾病的正常NCEP脂质水平的患者的方法,包括测量一种或多种LDL或HDL颗粒亚类水平并鉴定异常的LDL或HDL亚类水平。 LDL III a + b和HDL 2b是优选的亚类。
Abstract:
The invention provides a data base of LDL, I, Ia, IIb, IIIa, IIb, IVa, IVb and HDL2a, HDL2b, HDL 3a, HDL 3b and HDL 3c together with patient data such as HDL-C, LDL-C, Apo A, ApoB, Lp(a) and patient personal data useful for treatment, diagnosing, and monitoring cardiovascular disease. The data base contains the LDL and HDL subfraction data in quantitative mg/dl values and permits deriving relationship amongst the LDL and HDL values and cardiovascular disease. Quantitative data permits more effective treatment and monitoring of cardiovascular disease. For example, quantitative differences in LDL and HDL subclass levels can determine the need for more or less aggressive treatment. The data base which includes patient events, procedures, interventions which is correlated to LDL and HD1 quantitative subclass data permits development of personalized patient treatment plans and monitoring the effectiveness of such treatment. Thus, LDL and HDL quantitative subfraction data can be used to more effectively treat and monitor cardiovascular disease. The invention, for example, provides a method for identifying patients with normal NCEP lipid levels who are in need of treatment for cardiovascular disease comprising measuring one or more LDL or HDL particle subclass levels and identifying abnormal LDL or HDL subclass levels. LDL III a & b and HDL 2b are preferred subclasses.