Abstract:
A thermal ink jet ink composition includes one or more volatile organic solvents, wherein the one or more volatile organic solvents are selected from C1-C4 alcohols, C3-C6 ketones, C3-C6 esters, C4-C8 ethers, and mixtures thereof; one or more humectants, wherein the humectants are present in an amount not more than 30% by weight of the ink composition; one or more binder resins; and one or more dyes. The ink composition is suitable for use in a thermal ink jet printer and the ink composition has a slow rate of kogation such that it is capable of being printed at least 10 million drops per nozzle from the thermal ink jet printer before drop weight of the ink composition is reduced by more than 10%.
Abstract:
A method of printing a modified product code includes providing a printer and a substrate. An initial product code is determined. The initial product code includes a plurality of unmodified characters. A modified product code is determined. The modified product code includes at least one modified character that is different from a corresponding one of the plurality of unmodified characters of the initial product code. The modified character is a function at least in part by of initial product code. The printer is controlled to print the modified product code on the substrate.
Abstract:
An ink supply system for an ink jet printer, particularly a continuous ink jet printer, has a manifold assembly of two parts that are brought together at interfacing surfaces. At least one of the surfaces has a plurality of ink flow channels for conveying ink around an ink circuit between components. The other of the interfacing surfaces is configured to close and seal the channels. A plurality of ports is provided in fluid communication with the channels, the circuit components being connectable to the ports. The manifold assembly provides for a compact and neat arrangement free of many tubes and pipes. The lower number of connections significantly reduces the risk of leakage.
Abstract:
A print head includes a fluid cavity and nozzle in fluid communication with the fluid cavity. A stopper is positioned adjacent the nozzle and adapted to control flow of fluid through the nozzle. An arm supports the stopper and is configured to pivotally move the stopper with respect to the nozzle. An electromagnet is positioned adjacent the arm and configured to move the arm toward the electromagnet to open the nozzle.
Abstract:
An ink jet printer includes a print head, a gutter, an ink supply system, and a fluid cartridge. The fluid cartridge includes an inner collapsible container for containing a printing fluid. The container includes an outlet for connection to the printer, an outer housing, an electronic storage device, and at least one electrical contact.
Abstract:
An ink supply system for an ink jet printer has an ink circuit including a plurality of circuit components and fluid paths for conveying ink between components. A manifold defining the fluid paths and a plurality of ports in fluid communication with the paths. A filter module is provided adjacent to the manifold and comprises a housing that houses at least a first filter, the housing having an inlet and an outlet. The filter module is connected to the manifold such that at least one of the inlet or the outlet is in fluid communication with one of the plurality of ports on the manifold. The filter module may comprise an ink filter and a solvent filter. A second ink filter may be provided upstream of a pump. The modular nature of the filter makes for easy assembly, service and repair. It also provides for improved printer reliability.
Abstract:
A continuous stream ink jet print head comprising: a droplet generator (1) for generating a continuous stream of ink droplets; a charging electrode (40) for selectively charging the ink droplets; deflection electrodes (4) for deflecting the charged ink droplets; and a catcher (7) for collecting uncharged ink droplets, wherein the deflection electrodes are contained within a surrounding structure (2) that both (i) provides surfaces (41) which are contoured to the shape of the main bodies of the deflection electrodes such that the main bodies may be mounted against the surfaces to correctly position the deflection electrodes within the print head, and (ii) serves as a manifold for fluid in operation of the print head, wherein the print head includes a cover (10) for the surrounding structure, the cover forming a wall of the space between the deflection electrodes, the wall extending along the stream of ink droplets.
Abstract:
An ink supply system for an ink jet printer, particularly a continuous ink jet printer, has a docking station where one of more disposable cartridges of ink or solvent are releasably connectable to the printer. The cartridge comprises an inner collapsible container with an outlet that is connectable to an inlet of the ink supply system and a substantially rigid outer housing. A front wall of the housing has an opening providing access to the outlet and a window that provides access to electrical contacts (92) associated with a memory device containing information relating to the contents of the cartridge. The contacts in a fixed relationship relative to the outlet so that when the cartridge is docked to establish fluid communication with the ink supply system the electrical contacts are electrically connected to respective contacts associated with the printer.
Abstract:
A print head assembly includes a print head and a print head cover disposed around the print head. The print head cover includes a face and a print opening disposed in the face. The print opening disposed adjacent an ejection point of the print head. A perforated area is disposed on the face.
Abstract:
A solvent-based inkjet ink composition for inkjet printing includes at least 50 weight percent solvent, a colorant, a humectant, from 0.3 weight % to 8 weight % of a binder resin, and not more than 5 weight percent water. The ink composition is compatible with components of a thermal ink jet printer.