Abstract:
A motion capture system includes a motion sensor having a flexible body and a fiber bragg gratings (FBG) sensor inserted into the body, a fixture configured to fix the motion sensor to a human body of a user, a light source configured to irradiate light to the motion sensor, and a measurer configured to analyze a reflected light output from the motion sensor, wherein the FBG sensor includes an optical fiber extending along a longitudinal direction of the body and a sensing unit formed in a partial region of the optical fiber and having a plurality of gratings, and wherein a change of a wavelength spectrum of the reflected light, caused by the change of an interval of the gratings due to a motion of the user, is detected to measure a motion state of the user.
Abstract:
Provided is a force conveyance system that is configured to have 6 degrees of freedom, thereby allowing freedom of movement such as opening/closing of a hand and adduction/abduction of a finger and reflecting a desired force to a fingertip without obstructing the movement of a finger. Also, the force conveyance system may estimate a fingertip position and a finger joint angle, measure a finger movement, and convey a more accurate force accordingly.
Abstract:
A method of controlling a virtual model to perform physics simulation to the virtual model in a virtual space includes: generating a first virtual model having a first object physics field which is a range with respect to a first field parameter; generating a second virtual model having a second object physics field which is a range with respect to a second field parameter; when the field parameters are capable of corresponding to each other, checking whether there is a portion where the object physics fields correspond to each other; and when there is a portion where the object physics fields correspond to each other, generating an interaction of the virtual models.
Abstract:
The present invention relates to a data processing device, method, and computer program for data sharing among multiple users. The device includes a sensor module collecting data by using at least one of a camera sensor, a distance sensor, a microphone array, a motion capture sensor, an environment scanner, and a haptic device; a memory module storing and controlling the data collected by the sensor module; and a network module transmitting the data stored in the memory module to a remote location, or receiving predetermined data from the remote location, wherein the memory module stores the stored data and the predetermined data as data in a standardized format according to data features.
Abstract:
Embodiments relate to an apparatus for applying a haptic property using a texture perceptual space and a method therefor, the apparatus including an image acquirer configured to acquire an image of a part of a virtual object inside a virtual space, a perceptual space position determiner configured to determine a position of the image inside a texture perceptual space in which a plurality of haptic models are arranged at predetermined positions, using feature points of the acquired image, a haptic model determiner configured to determine a haptic model that is closest to the determined position of the image, and a haptic property applier configured to apply a haptic property of the determined haptic model to the part of the virtual object, in which each of the haptic models includes a texture image and a haptic property for a specific object.
Abstract:
Provided are a method and system for detecting information of brain-heart connectivity, the method comprising: obtaining moving images of a pupil and an electrocardiogram (ECG) signal from a subject; acquiring a pupil size variation (PSV) from the moving images by separating the moving images at a predetermined time range after R-peak of the ECG signal; extracting signals of a first period and a second period from the PSV; calculating alpha powers of the signals of the first and second periods at predetermined frequencies respectively.
Abstract:
Provided are a method and system for noncontact vision-based 3D cognitive fatigue measuring. The method comprises: acquiring pupil images of a subject exposed to visual stimuli; extracting a task evoked pupillary response (TEPR) by using the pupil images; detecting dominant peaks from the TEPR; calculating latency of dominant peaks; and determining cognitive fatigue of the subject by comparing a value of the latency to a predetermined reference value.
Abstract:
A head-mounted device (HMD) for enabling a 3D drawing interaction in a mixed-reality space is provided. The HMD includes a frame section, a rendering unit providing a specified image, a camera unit attached to the frame section to pick up an image for rendering, and a control unit configured to, when the camera unit picks up an image of a specified marker, perform a calibration process based on position information of the image of the marker displayed on a screen of the HMD and to, when there is a motion of an input device for interaction with a virtual whiteboard, obtain position information of an image of the input device displayed on a virtual camera screen based on position information of the whiteboard.
Abstract:
A method for performing occlusion queries is disclosed. The method includes steps of: (a) a graphics processing unit (GPU) using a first depth buffer of a first frame to thereby predict a second depth buffer of a second frame; and (b) the GPU performing occlusion queries for the second frame by using the predicted second depth buffer, wherein the first frame is a frame predating the second frame. In accordance with the present invention, a configuration for classifying the objects into the occluders and the occludees is not required and the occlusion queries for the predicted second frame are acquired in advance at the last of the first frame or the first of the second frame.
Abstract:
The present invention relates to an apparatus for creating a tactile sensation through non-invasive brain stimulation by using ultrasonic waves. The apparatus includes: an ultrasonic transducer module for inputting the ultrasonic waves to stimulate a specific part of the brain of a specified user non-invasively through at least one ultrasonic transducer unit; a compensating module for acquiring information on a range of tactile perception areas in the brain of the specified user and compensating properties of ultrasonic waves to be inputted to the specified user through the ultrasonic transducer unit by referring to the acquired information thereon; and an ultrasonic waves generating module for generating ultrasonic waves to be inputted to the specified user through the ultrasonic transducer unit by referring to a compensating value decided by the compensating module.