Abstract:
It has been found that surface reactions with basic materials such as amines found in the processing environment during lithographic processing contribute to a loss of linewidth control for resists such as chemically amplified resists. This loss in linewidth results from the reaction of the acid generated by exposing radiation with, for example, the amine resulting in a lack of chemical reaction where such reaction is desired. The problem is solved in one embodiment by employing an acid containing barrier layer on the resist.
Abstract:
Polymers suitable for chemically amplified resists based on styrene chemistry are advantageously formed with a meta substituent on the phenyl ring of the styrene moiety. Additionally, polymers for such applications including, but not limited to, meta substituted polymers are advantageously formed by reacting a first monomer having a first protective group with a second monomer having a second protective group. After polymerization, the second protective group is removed without substantially affecting the first protective group. For example, if the first protective group is an alkoxy carbonyl group, and the second protective group is a silyl ether group, treatment with a lower alcohol with trace amounts of acid transforms the silyl group into an OH-moiety without affecting the alkoxy carbonyl group.
Abstract:
Photosensitive bodies that are sensitive to ultraviolet radiation and that exhibit excellent contrast are formed from base soluble polymers such as poly(methyl methacrylate-co-methacrylic acid) physically mixed with base insoluble materials such as o-nitrobenzyl esters. The base insoluble esters decompose upon irradiation to form base soluble entities in the irradiated regions. These irradiated portions are then soluble in basic solutions that are used to develop the desired image.