Abstract:
Techniques including steps of: providing a support body; forming an organic semiconductor composition body including an organic semiconductor composition on the support body, no more than 10% by weight of the organic semiconductor composition being pentacene; providing a first organic dielectric composition mobilized in a first liquid medium, the organic semiconductor composition being insoluble in the first liquid medium; and forming a first organic dielectric composition body from the first organic dielectric composition on the organic semiconductor composition body. Techniques in which an organic semiconductor composition body is formed on an organic dielectric composition body. Apparatus having an organic dielectric composition body on an organic semiconductor composition body.
Abstract:
A composition, comprising organic polymer molecules, and organic nonpolymeric molecules, wherein the composition is a semiconducting solid. The composition includes a distribution of crystal domains of the polymer molecules and inter-domain regions between the crystal domains, a concentration of polymer molecules being higher in the crystal domains than in the inter-domain regions, and a concentration of nonpolymeric molecules being higher in the inter-domain regions than in the crystal domains.
Abstract:
Techniques for producing a glass structure having interconnected macroscopic pores, employing steps of filling polymerizable glass precursors into pores in a polymeric structure having interconnected macroscopic pores; polymerizing the precursors; and decomposing the polymers to produce a glass oxide structure having interconnected macroscopic pores. Further techniques employ steps of exposing portions of a photosensitive medium including glass precursors to an optical interference pattern; polymerizing or photodeprotecting the exposed portions and removing unpolymerized or deprotected portions; and decomposing the polymerized or deprotected portions to produce a glass structure having interconnected macroscopic pores. Techniques for filling pores of such glass structure with a material having a high refractive index, and for then removing the glass structure. Structures can be produced having interconnected macroscopic pores and high refractive index contrasts, which can be used, for example, as photonic band gaps.
Abstract:
A tunable microlens uses a layer of photo-conducting material which results in a voltage differential between at least one of a plurality of electrodes and a droplet of conducting liquid when a light beam is incident upon the photo-conducting material. Such droplet, which forms the optics of the microlens, moves toward an electrode with higher voltage relative to other electrodes in the microlens. Thus, for example, when the light beam is misaligned with the microlens, the voltage differential causes the droplet, and hence the microlens, to realign itself with the beam.
Abstract:
High-resolution patterning of a device surface is effected by a method which involves the use of a multi-layer resist structure. An organic resist layer is on the surface to be patterned, and an inorganic resist layer is on the organic resist layer. A pattern is produced in the inorganic layer by exposure to actinic radiation and, after development of the inorganic layer, the pattern is replicated in the organic layer by additional exposure to actinic radiation. The pattern is then developed in the organic layer so as to leave exposed surface portions to be affected by a fabrication agent.
Abstract:
Described herein are improved methods of forming polymer films, the polymer films formed thereby, and electronic devices formed form the polymer films. The methods generally include contacting a polymer with a solvent to at least partially solvate the polymer in the solvent, exposing the at least partially solvated polymer and solvent to ultrasonic energy for a duration effective to form a plurality of ordered assemblies of the polymer in the solvent, and forming a solid film of the polymer, wherein the solid film comprises the plurality of ordered assemblies of the polymer.
Abstract:
Techniques including steps of: providing a support body; forming an organic semiconductor composition body including an organic semiconductor composition on the support body, no more than 10% by weight of the organic semiconductor composition being pentacene; providing a first organic dielectric composition mobilized in a first liquid medium, the organic semiconductor composition being insoluble in the first liquid medium; and forming a first organic dielectric composition body from the first organic dielectric composition on the organic semiconductor composition body. Techniques in which an organic semiconductor composition body is formed on an organic dielectric composition body. Apparatus having an organic dielectric composition body on an organic semiconductor composition body.
Abstract:
Photosensitive bodies that are sensitive to ultraviolet radiation and that exhibit excellent contrast are formed from base soluble polymers such as poly(methyl methacrylate-co-methacrylic acid) physically mixed with base insoluble materials such as o,o'-dinitrobenzyl esters. The base insoluble esters decompose upon irradiation to form base soluble entities in the irradiated regions. These irradiated portions are then soluble in basic solutions that are used to develop the desired image.
Abstract:
Excellent resolution in the lithographic fabrication of electronic devices is achieved with a specific bilevel resist. This bilevel resist includes an underlying layer formed with a conventional material such as a novolac resist baked at 200.degree. C. for 30 minutes and an overlying layer including a silicon containing material such as that formed by the condensation of formaldehyde with a silicon-substituted phenol. This bilevel resist has the attributes of a trilevel resist and requires significantly less processing.
Abstract:
A photolithographic resist with excellent sensitivity for actinic radiation in the short wavelength ultraviolet region is produced from terpolymers of (1) methyl methacrylate, (2) materials such as 3-oximino-2-butanone methacrylate, and (3) compounds such as methacrylonitrile.