Abstract:
An annular groove portion is integrally formed for preventing splashing of the lubricating oil by extending from a mount base (10) of the motor rotor to the motor shaft (6) to the metal bearing (5) and the radial ball bearing (20), allowing a spacer member (15) making contact with an inner ring (20a) of the radial ball bearing (20) to be attached inside the annular groove portion.
Abstract:
An impeller includes a vane component integrally molded with a plurality of vanes having predetermined tilt angles that change continuously from a central portion of rotation, and a bottomed cylindrical component formed with a rotating shaft body, so that the vanes have an ideal shape with tilt angles that match the rotational peripheral velocity. For this purpose, the impeller of an axial fan serves as a rotor arranged to be rotatable with respect to a stator fixed to a main body of the axial fan. The impeller includes a bottomed cylindrical component formed by injection molding from a predetermined resin material such that a shaft body axially supported by a rotary bearing of the main body is formed at a central portion of rotation thereof, and a vane component formed by injection molding from a predetermined resin material such that a plurality of vanes are equidistantly formed thereon.
Abstract:
This invention provides a compact, flat axial fan which is not limited by the shape of an incorporated rotor magnet and ensures a sufficiently large air flow and wind pressure, wherein the slide (under) piece of a mold that forms the under-molding portions of the vanes of the impeller of the axial fan is pulled out while being twisted (while performing a helical motion) in the direction of central axis of the base portion of the impeller, so that the mold can be formed simple to realize a multi-cavity mold, and the vanes can be formed into an ideal form by setting vane angles depending on different rotating peripheral velocities of the vanes, so that air can be supplied form the under-molding portions of the vanes to the vanes on the outer circumferential side during rotation of the impeller and a method of manufacturing an impeller for the axial fan. For this purpose, in an axial fan comprising an impeller integrally formed, by resin molding, with a plurality of vanes extending from a bottomed cylindrical body to which a rotary axial support shaft body is formed at a center of rotation, each of the vanes is integrally formed by resin molding with a main vane extending from an outer circumferential surface of the bottomed cylindrical body at a predetermined tilt angle.
Abstract:
A sheet feeding device, which is configured to feed stacked sheets one by one in a sheet feed direction, is provided with a sheet tray configured to accommodate the stacked sheets, a feed-out roller protruded from the sheet tray and configured to feed the stacked sheets from the sheet tray, a feed-out nip member arranged above and opposite to the feed-out roller, the feed-out nip member being configured to contact an uppermost sheet of the stacked sheets and bias the sheets toward the feed-out roller, a separation unit located on a downstream side, in the sheet feed direction, of the feed-out roller, the separation unit separating a lowermost sheet from the stacked sheets fed by the feed-out roller, and a friction member configured to contact the uppermost sheet of the stacked sheets at a position different from a position where the feed-out nip member contacts the uppermost sheet.
Abstract:
An image reading device is provided, which includes a controller configured to, when a carriage reaches a turn-around position in a moving direction, control a motor to once stop, then rotate in a second direction opposite to a first direction such that a planetary gear swings to a position separated from an output gear and that an intermediate gear moves to an engagement position to engage with the output gear, and thereafter again rotate in the first direction so as to transmit a driving force from the motor to the output gear via an input gear, a planetary gear, and the intermediate gear.
Abstract:
An image reader is provided, which includes an intermediate feed roller that is disposed downstream relative to a separation roller on a feeding path and configured to rotate in contact with a document sheet separated and fed by the separation roller and feed the document sheet to a downstream side on the feeding path so as to restrain a variation of a tensile force applied to the document sheet, which variation may be caused when the document sheet is fed and away from the separation roller, and only a single U-turn roller that is disposed downstream relative to the intermediate feed roller on the feeding path, and configured to rotate in contact with the document sheet fed by the intermediate feed roller and feed the document sheet to a reading unit in a U-turn manner on a U-turn path curved along an outer circumferential surface of the U-turn roller.
Abstract:
A sheet ejector, configured to eject sheets so as to insert a later-ejected sheet under an earlier-ejected sheet on a catch tray, includes a feed roller provided to the catch tray, wherein the feed roller is configured to feed, in a predetermined ejecting direction, the later-ejected sheet that is inserted under the earlier-ejected sheet, and a switching mechanism configured to switch a state of the feed roller relative to a sheet on the catch tray between a contact state where the feed roller contacts the sheet on the catch tray and a non-contact state where the feed roller is kept from contacting the sheet on the catch tray.
Abstract:
In one aspect of a sheet conveying device, a sheet member is guided from a sheet feeding port through a reading position to a terminal end positioned above the sheet feeding port on a first path, guided from the terminal end through the reading position to the terminal end again on a second path, and guided from the terminal end through the reading position to a sheet discharging port on a third path. A transfer member rotates a conveying member and halts the rotation of the conveying member respectively according to first and second rotations of a driving source. A first detecting unit is provided downstream of the sheet feeding port on the first path. A control unit switches the driving source from the first rotation to the second rotation on the basis that the first detecting unit detects a trailing end of the sheet member.
Abstract:
It is an object of the invention to provide an inexpensive and high-quality fluid bearing which improves the workability in assembly or coupling of a shaft and a rotator. In order to achieve this object, a fluid bearing according to the invention includes a rotating shaft, a bearing member for rotatably supporting the rotating shaft, and first and second fluid film formation mechanisms arranged at positions near a central portion of the rotating shaft along its longitudinal direction. The first fluid film formation mechanism forms a fluid film between the rotating shaft and the bearing member while the rotating shaft rotates in a first direction. The second fluid film formation mechanism forms a fluid film between the rotating shaft and the bearing member while the rotating shaft rotates in a second direction opposite to the first direction.