摘要:
A method of treating cardiovascular disease in a medical patient is provided. The method includes the steps of generating a sensor signal indicative of a fluid pressure within the left atrium of the patient's heart, and delivering an electrical stimulus to a location in the heart. The electrical stimulus is delivered based at least in part on the sensor signal. The method also includes the steps of generating a proccessor output indicative of a treatment to a signaling device. The processor output is based at least in part on the sensor signal. At least two treatment signals are provided to the medical patient. The treatment signals are distinguishable from one another by the patient, and are indicative of a therapeutic treatment. The treatment signals are based at least in part on the processor output.
摘要:
The invention provides improved apparatus and methods for treating congestive heart failure in a medical patient. The apparatus includes a pressure transducer permanently implantable within the left atrium of the patient's heart and operable to generate electrical signals indicative of fluid pressures within the patient's left atrium. The pressure transducer is connected to a flexible electrical lead, which is connected in turn to electrical circuitry, which in the preferred embodiment includes digital circuitry for processing electrical signals. The electrical circuitry processes the electrical signals from the pressure transducer and, based at least in part on those signals, generates a signal that indicates a desired therapeutic treatment for treating the patient's condition. That signal is then communicated to the patient via a patient signaling device, following which the patient administers to him or herself the prescribed therapeutic treatment indicated by the signal.
摘要:
This invention relates generally to systems and methods for optimizing the performance and minimizing complications related to implanted sensors, such as pressure sensors, for the purposes of detecting, diagnosing and treating cardiovascular disease in a medical patient. Systems and methods for anchoring implanted sensors to various body structures is also provided.
摘要:
This invention relates generally to systems and methods for optimizing the performance and minimizing complications related to implanted sensors, such as pressure sensors, for the purposes of detecting, diagnosing and treating cardiovascular disease in a medical patient. Systems and methods for anchoring implanted sensors to various body structures are also provided.
摘要:
A method for accessing a target site in the body by transferring a guidewire from an initial insertion site on the body to a different insertion site on the body is provided. In one aspect, a method for transferring a medical device or component, such as a sensor lead, from an initial insertion site to another insertion site is also provided. A guidewire of sufficient length, pliancy and deformability to perform a transfer from one insertion site to another insertion site is provided. In one aspect, the guidewire comprises a removable core mandrel to increase rigidity, facilitate insertion and/or improve steerability. A kit or system, comprising introducers, guidewires and catheters for performing a guidewire or device transfer is also provided.
摘要:
Systems and methods for penetrating a tissue membrane to gain access to a target site are disclosed. In some examples, systems and methods for accessing the left atrium from the right atrium of a patient's heart are carried out by puncturing the intra-atrial septal wall. One embodiment provides a system for transseptal cardiac access that includes a stabilizer sheath having a side port, a shaped guiding catheter configured to exit the side port and a tissue penetration member disposed within and extendable from the distal end of the guide catheter. The tissue penetration member may be configured to penetrate tissue upon rotation and may be coupled to a distal portion of a torqueable shaft. In some embodiments, the stabilizer sheath and shaped guiding catheter may be moved relative to the patient's body structure and relative to each other so that a desired approach angle may be obtained for the tissue penetration member with respect to the target tissue.
摘要:
A method of displaying details of a coronary artery lesion in a cineangiogram, by adjusting each frame of the cineangiogram so that the lesion is continually displayed at a fixed location on a display. The remaining cardiac anatomy appears to move, in background, past a stationary arterial segment, thus making the displayed arterial segment easier to identify and to examine by medical personnel. Cineangiographic image frames are digitized and processed by a processor and the image frames are digitally shifted to place the arterial segment in substantially the same viewing location in each frame. Sequential image frames may be presented to the viewer as a stereoscopic pair, to produce pseudostereopsis. The arterial segment appears to the viewer in foreground, as if it was floating in front of the remaining cardiac anatomy. Image frames may be further processed to aid examination by medical personnel. The processor may make quantitative measurements of the cineangiogram and may display results of those measurements to aid review of the cineangiogram. Frames may be averaged to reduce quantum noise and to blur any structure noise; frames may be compared with prior cineangiograms to increase clarity or contrast. Coordinate adjustments for a cineangiogram may help guide therapeutic procedures, or may help enhance other imaging procedures such as fluoroscopy.
摘要:
A method of displaying details of a coronary artery lesion in a cineangiogram, by digitally adjusting each frame of the cineangiogram so that the lesion is continually displayed at a fixed location on a display screen. The remaining cardiac anatomy appears to move, in background, past a stationary arterial segment, thus making the displayed arterial segment easier to identify and to examine by medical personnel. Cineangiographic image frames are digitized and processed by an image processor and the image frames are digitally shifted to place the arterial segment in substantially the same viewing location in each frame. Sequential image frames may be presented to the viewer as a stereoscopic pair, to produce pseudostereopsis. The arterial segment appears to the viewer in foreground, as if it was floating in front of the remaining cardiac anatomy. Image frames may be further processed to aid examination by medical personnel. Frames may be averaged to reduce quantum noise and to blur any structure noise. Frame averaging may be used to make numerical measurements of arterial cross-section.