Abstract:
A resonant converter and voltage stabilizing method thereof are provided. The resonant converter includes a converting stage circuit, a diode-rectifying stage circuit, a filter and load stage circuit, a logic circuit, a driving circuit, and an energy-recycling circuit. The method includes steps of recycling an energy from the filter and load stage circuit to the converting stage circuit when the resonant converter is light- or zero-loaded.
Abstract:
A converter includes a transformer module, a primary side circuit module, and a secondary side circuit module. The transformer module includes a magnetic core group and a winding. The winding includes a primary winding and a secondary winding, and is further installed on the magnetic core group. The primary side circuit module is coupled to the primary winding. The secondary side circuit module is coupled to the secondary winding. The primary side circuit modules or the secondary side circuit module has overlapping vertical projection area on a first plane with the winding, and the first plane is a plane in a horizontal direction of the winding.
Abstract:
A transformer capable of suppressing common mode current and a power converter thereof are provided. The transformer comprises a primary winding, a secondary winding, a magnet core and a shielding winding layer. The shielding winding layer has a first shielding winding and a second shielding winding. A voltage jump direction of the first shielding winding is constantly opposite to that of the second shielding winding. The shielding winding layer is coupled to a static terminal coupled with the primary winding or the secondary winding.
Abstract:
A DC/DC converter, a power converter and a control method thereof are disclosed, wherein the DC/DC converter includes an output circuit, a rectangular wave generator, a resonant tank, a detection unit and a control unit. The output circuit has a load. The rectangular wave generator converts an input voltage into driving pulses. The resonant tank provides a first voltage based on the driving pulses for the output circuit. The detection unit detects a signal related to a state of the load. When the state of the load is a light-load or a no-load, the control unit controls the rectangular wave generator in a hiccup mode to reduce a ratio of a work period to a stop period, or makes that number of the driving pulses within the current work period is less than the number of the driving pulses when a duty ratio is 50%.
Abstract:
A lamp ignition system and a lamp ignition method are disclosed, where the lamp ignition system includes a converter, a transformer and a driving circuit. The converter converts an input voltage into an operating voltage for a gas discharge lamp. The transformer has a primary winding and a secondary winding, and the secondary winding is connected to the gas discharge lamp in series. The driving circuit is electrically connected to the primary winding for driving the transformer, so that the secondary winding of the transformer can output a high-frequency voltage to ignite the gas discharge lamp.
Abstract:
A method and a device for controlling a discharge Lamp, and a discharge lamp system are disclosed herein. The method includes the operations of: when the lamp current changes, determining a percentage of change of the lamp current according to a synchronous signal and obtaining a second lamp current after a discharge lamp current changes according to the percentage of change of the lamp current and a first lamp current; obtaining a modulating signal according to a current difference between the first lamp current and the second lamp current; and generating a pulse voltage signal according to the modulating signal. The pulse voltage signal transits from a first voltage to a second voltage during the time period when the lamp current is transited from a first lamp current to a second lamp current during a transition time.
Abstract:
A driver for driving a driving element includes: a signal source, for providing a square signal; a first modulation circuit, for providing on-pulses and off-pulses according to edges of the square signal; a transformer for coupling output signals of the first modulation circuit to a secondary winding of the transformer to form coupled signals; a second modulation circuit for providing first operating pulses according to coupled on-pulses of the coupled signals, and providing second operating pulses according to coupled off-pulses of the coupled signals; a switch device for turning off the switch device according to the first operating pulses and turning on the switch device according to the second operating pulses, and when the switch device is turned off, coupled on-pulses charge an equivalent capacitor of the driving element to a first driving potential to turn on the driving element, and when the switch device is turned off, the equivalent capacitor discharges to a second driving potential to turn off the driving element, and the width of the on-pulses is less than 1000 ns.
Abstract:
A converter includes a transformer module, a primary side circuit module, and a secondary side circuit module. The transformer module includes a magnetic core group and a winding. The winding includes a primary winding and a secondary winding, and is further installed on the magnetic core group. The primary side circuit module is coupled to the primary winding. The secondary side circuit module is coupled to the secondary winding. The primary side circuit modules or the secondary side circuit module has overlapping vertical projection area on a first plane with the winding, and the first plane is a plane in a horizontal direction of the winding.
Abstract:
The present disclosure provides a power semiconductor switch series circuit. The power semiconductor switch series circuit includes a plurality of series modules and a system control module. Each series module has a power semiconductor switch; a drive module for driving each power semiconductor switch to be turned on or turned off; a short-circuit detection unit for outputting at least one detection signal; an equalizer circuit; a comparison module for comparing the detection signal with a predetermined threshold, and outputting a short-circuit signal when the detection signal exceeds the predetermined threshold; and a soft turn-off module for receiving the short-circuit signal and outputting a second control signal. The system control module receives the short-circuit signal and outputs a first control signal.
Abstract:
A discharge lamp system includes a discharge lamp, a power source, a converter, a lamp state signal detection module and a controller. The power source provides a DC power. The converter converts the DC power into a current required by the discharge lamp. The lamp state signal detection module receives a lamp state signal and outputs a lamp state detection signal. The controller processes the lamp state detection signal and a given synchronization signal to generate an average lamp current signal and a pulse current signal, and then processes the average lamp current signal and the pulse current signal to generate a control signal. The controller performs current control of the discharge lamp through the converter according to the control signal. Furthermore, a method for controlling a discharge lamp is also disclosed herein.