Abstract:
An apparatus and method for data interface of a flat panel display device, which is capable of transferring clocks in a state, in which the clocks are embedded in digital data, thereby reducing the number of transfer lines, is disclosed. The apparatus includes a transmitter unit built in a timing controller, to transmit transfer data with an embedding clock embedded between successive pieces of data, and a clock enable signal to indicate the embedding clock, and receiver units respectively built in a plurality of data integrated circuits connected to the timing controller, to separate and detect the embedding clock and the data from the transfer data, in response to the clock enable signal.
Abstract:
A liquid crystal display device and a driving method thereof, which are capable of preventing generation of a residual image upon power-off, are disclosed. The liquid crystal display device includes a power supply unit for outputting a plurality of drive voltages after delaying the drive voltages, a voltage detector for monitoring one of the drive voltages, and outputting a power-off detect signal based on the result of the monitoring, a timing controller for increasing a frequency of a control signal in response to the power-off detect signal, and outputting the frequency-increased control signal, a gate driver for outputting a scan signal in response to the frequency-increased control signal, a data driver for outputting a constant voltage in response to another control signal from the timing controller, and a liquid crystal panel for applying the constant voltage to all sub-pixels of the liquid crystal panel in response to the scan signal.
Abstract:
A liquid crystal display (LCD) includes a liquid crystal panel a liquid crystal panel including first and second substrates, and a liquid crystal layer disposed between the first and second substrates; a gate driving block including a plurality of gate drivers disposed in an edge area of the first substrate; a data driving block including a plurality of data drivers each connected to the first substrate and to a source printed circuit board (PCB) by a respective tape carrier package (TCP) of a plurality data TCPs; and a data pad unit disposed on each data TCP, wherein pitches of data pads disposed on each data pad unit are different in different portions of the of each data TCP, and the data pads are each to transmit a data signal from the data driving block to a data line of the liquid crystal panel.
Abstract:
A liquid crystal display (LCD) device and a driving method thereof for improving a working efficiency of the LCD and reducing manufacturing costs. The liquid crystal display device includes a liquid crystal display panel having liquid crystal cells at crossings of data lines and gate lines, data integrated circuit supplying pixel data via a plurality of data output channels, a gate integrated circuit driving the gate lines, a channel selector for selecting the plurality of data output channels of the data integrated circuits in accordance with a number of the data lines wherein only the selected data output channels contain the pixel data, and a timing controller for controlling the data integrated circuit and the gate integrated circuit.
Abstract:
A method for driving a liquid crystal display is provided. In the method, a first pre-charge voltage and a second pre-charge voltage are generated from an external voltage source separated from a data driving integrated circuit. A data line is pre-charged with the first pre-charge voltage during a first period. The data line is charged to reach a target value of a first data signal during a second period. The data line is pre-charged with the second pre-charge voltage during a third period. The data line is charged to reach a target value of a second data signal during a fourth period. A liquid crystal display device is capable of reducing the heating value of a driver that drives the data line.
Abstract:
A method and apparatus for driving a liquid crystal display panel results in minimizing the deterioration of picture quality caused by a variation in the gate low voltage. A liquid crystal cell matrix is defined by intersections between gate lines and data lines. In the apparatus, a gate driver applies a gate high voltage to the gate lines in a corresponding first period, a first gate low voltage independent from other gate lines to the gate lines in the next second period, and a second gate low voltage depending on other gate lines to the gate lines in the next third period.
Abstract:
An apparatus and method of driving data of a liquid crystal display device is disclosed, which can minimize an electromagnetic interference EMI noise by decreasing an output peak current of a data driver, the apparatus comprising a timing controller for supplying a reference source output enable signal; a delay circuit for delaying the reference source output enable signal and supplying a plurality of source output enable signals provided with the different delay times; and a data driver, including a plurality of data ICs to divide and drive data lines of a liquid crystal panel into a plurality of data blocks, for dispersing data output timing of the plurality of data ICs in response to the plurality of source output enable signals.
Abstract:
A liquid crystal display (LCD) device includes a gate line and a data line crossing each other, a gate driving unit and a data driving unit outputting signals to the gate line and the data line, a gate pad portion electrically connected to the gate line and having a first contact hole, a data pad portion electrically connected to the data line and having a second contact hole, a first output terminal of the gate driving unit completely covering the first contact hole, a second output terminal of the data driving unit completely covering the second contact hole, a first conductive film electrically connecting the first output terminal and the gate pad portion, and a second conductive film electrically connecting the second output terminal and the data pad portion.
Abstract:
A liquid crystal display device includes first and second substrates facing each other and attached to each other with a cell-gap therebetween, gate lines and data lines arranged horizontally and vertically on the first substrate, first lines formed on the first substrate, connected to the gate lines or the data lines, and each having a link bending point and bent at an angle, a TCP electrically attached to the first substrate, and second lines formed on the TCP and electrically connected to the first lines respectively. At least one link bending point is positioned at a region of the TCP.
Abstract:
A tape carrier package (TCP) includes a film, a plurality of output leads and a plurality of input leads on the film, the plurality of output leads and the plurality of input leads being disposed on different sides, first and second TCP alignment marks arranged on opposing sides of the plurality of output leads, and a third TCP alignment mark at a central portion of the plurality of output leads.