Abstract:
Bit-accurate creation of a film grain pattern occurs by first establishing a set of bit-accurate transformed coefficients. The set of bit-accurate transformed coefficients undergo frequency filtering and a subsequent bit-accurate inverse transformation to yield the film grain pattern.
Abstract:
The addition of comfort noise to an image serves to hide compression artifacts. To facilitate comfort noise addition, supplemental information accompanying a video image contains at least one parameter that specifies an attribute regarding comfort noise. Typically, the supplemental information includes parameters that function to turn the comfort noise on and off, as well as to indicate the level of noise to add, based on the expected level of compression artifacts.
Abstract:
The invention relates to a method intended to automatically create a description of a video sequence—i.e. its table of contents—by analyzing the video sequence. First is a temporal segmentation of the video shots of the sequence, using camera motion parameters. This segmentation uses a similarity criterion involving, for sub-entities of each shot, the level of homogeneity of these sub-entities on the motion parameters of the camera used to acquire the original images and generate the bitstream constituting the processed sequence.
Abstract:
A tone mapping graphical user interface (GUI) is provided that allows a video engineer to process a video using a set of tools for changing high dynamic range data into lower dynamic range data. The tone mapping GUI includes a video player region that includes the current video output section for a region-based method of performing HDR conversion, and a current video output section for a reference method that performs HDR conversion using, for example, a global process.
Abstract:
The present invention provides methods for determining block averages in film grain simulation including determining block averages during a display process and determining block averages during a decoding process. The methods of the present invention exhibit different characteristics in terms of memory requirements and computational cost. More specifically, the first method uses no external memory, but requires either extra reads of the blocks, or internal memory in the display pipeline, while the second method requires extra memory bandwidth and extra external memory (e.g., RAM).
Abstract:
Creation of a Bit-accurate film grain pattern for blending in an image block occurs by first establishing a set of bit-accurate transformed coefficients. The set of bit-accurate transformed coefficients undergo frequency filtering and a subsequent bit-accurate inverse transformation to yield the film grain pattern. The film grain pattern can then undergo blending with an image block to restore the look of film to the image.
Abstract:
A method of tone mapping high dynamic range images for display on low dynamic range displays wherein a high dynamic range image is first accessed. The high dynamic range image is segmented into different regions such that each region is represented by a matrix, where each element of the matrix is a weight or probability of a pixel. An exposure of each region is determined or calculated and the exposure values are applied to the regions responsive to the weight or probability. The different regions are then fused together to obtain a final tone mapped image.
Abstract:
A method for propagating user-provided foreground-background constraint information for a first video frame to subsequent frames allows extraction of moving foreground objects with minimal user interaction. Video matting is performed wherein constraints derived from user input with respect to a first frame are propagated to subsequent frames using the estimated alpha matte of each frame. The matte of a frame is processed in order to arrive at a rough foreground-background segmentation which is then used for estimating the matte of the next frame. At each frame, the propagated constraints are used by an image matting method for estimating the corresponding matte which is in turn used for propagating the constraints to the next frame, and so on.
Abstract:
One particular automatic parameter estimation method and apparatus estimates low level filtering parameters from one or more user controlled high-level filtering parameters. The high level filtering parameters are strength and quality, where strength indicates how much noise reduction will be performed, and quality indicates a tolerance which controls the balance between filtering uniformity and loss of detail. The low level filtering parameters that can be estimated include the spatial neighborhood and/or temporal neighborhood size from which pixel candidates are selected, and thresholds used to verify the “goodness” of the spatially or temporally predicted candidate pixels. More generally, a criterion for filtering digital image data is accessed, and a value is determined for a parameter for use in filtering digital image data, the value being determined based on whether the value results in the criterion being satisfied for at least a portion of a digital image.
Abstract:
There is provided method and apparatus for film grain simulation for normal play and trick mode play for video playback systems. A method for simulating film grain in video includes the step of performing (214) film grain simulation on a sequence of decoded video pictures in decode order.