Abstract:
A method and apparatus for providing a uniform coating thickness along an axial direction within an internal portion of a substrate tube is disclosed. A gas delivery unit is configured to coat the internal portion of the substrate tube. The gas delivery unit includes an insert. At least one of an inner diameter of the insert, a length of the insert, a gap between the insert and the substrate tube, and a flow of the gas mixture delivered to the substrate tube is configured to provide the uniform coating thickness along the axial direction.
Abstract:
A large-mode-area (LMA) optical fiber (10) that operates as a single-mode optical fiber. The optical fiber includes a core region (20) surrounded by an inner cladding (32), which in turn is surrounded by an outer cladding (40). The inner cladding includes at least one up-doped ring region (32R1). The ring region is configured to form a large attenuation differential between the higher-order modes and the fundamental mode so only that the fundamental mode remains traveling in the optical fiber. If necessary, the optical fiber can include a bend (10B) having a select “resonant” bend diameter (DB) that increases the relative attenuation of the fundamental and higher-order modes. The optical fiber supports an effective mode field diameter (MFD) of up to 40 μm to 50 μm. As a result, detrimental non-linear effects are suppressed, which allows the optical fiber to carry substantially more optical power than conventional LMA optical fibers. The LMA optical fiber is thus eminently suited for a number of optical-fiber-based applications calling for high optical power, such as fiber lasers and pump sources for wavelength conversion.
Abstract:
Dual coated optical fibers and methods for forming dual coated optical fibers are disclosed herein. The dual coated optical fibers include a glass fiber comprising a core region, a cladding region and a dual coating layer surrounding the glass fiber. The dual coating layer includes an inner coating and an outer coating. The inner coating surrounds the glass fiber and includes a first polyimide material. In one embodiment the first polyimide material also includes an adhesion promoter. The outer coating surrounds and is in direct contact with the inner coating and includes a second polyimide material having a decomposition threshold temperature greater than the first polyimide material. The second polyimide material may also have a modulus of elasticity greater than the first polyimide material and a moisture uptake lower than the first polyimide material.
Abstract:
A method for making low PMD fiber comprising the steps of: (i) making an initial fiber preform; (ii) modifying said initial fiber preform to introduce higher birefringence than that of the initial fiber preform into modified preform; and (iii) drawing an optical fiber from the modified preform and bi-directionally spinning the drawn fiber during draw.
Abstract:
A detection system comprising: (i) an optical fiber, the optical fiber having (a) a length L≧1 km; (b) beat length between 10 m and 100 m; and (c) beat length uniformity over any distance of at least 100 m within the length L is characterized by standard deviation σ, where |σ|≦10 m; (ii) an OTDR coupled to the fiber and including (a) a radiation source providing pulsed radiation to the fiber, (b) a detection system capable of detecting radiation that is backscattered back through the fiber; and (iii) at least one polarizer situated between the fiber and the detector, such that the backscattered radiation passes through the polarizer before reaching the detector.
Abstract:
A double-clad optical fiber includes a core, an inner cladding and an outer cladding of silica-based glass. The core may have a radius of less than about 5 μm, a first index of refraction n1 and does not contain any active rare-earth dopants. The inner cladding may surround the core and includes a radial thickness of at least about 25 μm, a numerical aperture of at least about 0.25, and a second index of refraction n2 such that n2
Abstract:
According to one example of the invention an optical fiber comprises: (i) a core consisting of Al doped silica having a first index of refraction n1; (ii) at least one silica based cladding surrounding the core and having a second index of refraction n2, such that n1>n2; (iii) a hermetic carbon based coating surrounding said cladding, said hermetic coating being 300 nm-1000 nm thick; and (iv) a second coating surrounding said hermetic coating, said second coating being 5 μm to 80 μm thick.
Abstract:
An optical fiber includes a core and a cladding, said cladding having a refractive index nc a first coating directly contacting the cladding of said fiber, said coating having a thickness of less than 10 microns, said coating having a refractive index delta %=100×(ni2−nc2)/2ni2 less than −1 percent. In another aspect, an optical fiber includes a core and a cladding, said cladding having a refractive index nc, a first coating directly contacting the cladding of said fiber, said fiber comprising a glass diameter less than 100 microns, said coating having a thickness of at least 8 microns, said coating having a refractive index delta %=100×(ni2−nc2)/2ni2 less than −1 percent.
Abstract:
An optical fiber, comprising: (i) a core having a core center and a radius or a width a, (ii) a cladding surrounding the core, and (iii) at least one stress member situated proximate to the fiber core within the cladding, said stress member comprising silica co-doped with F and at least one dopant selected from the list consisting of: GeO2, P2O5, Y2O3, TiO2 and Al2O3, wherein distance b between the stress member and the core center satisfies the following equation: 1≦b/a
Abstract translation:1.一种光纤,包括:(i)具有芯中心和半径或宽度a的芯,(ii)围绕所述芯的包层,以及(iii)至少一个应力构件,位于所述包层内的所述纤维芯附近 所述应力构件包括与F共掺的二氧化硅和选自GeO2,P2O5,Y2O3,TiO2和Al2O3中的至少一种掺杂剂,其中应力构件和核心中心之间的距离b满足以下等式:1 <= b / a <2。
Abstract:
An optical fiber including: (i) a silica based, rare earth doped core having a first index of refraction n1; and (ii) at least one silica based cladding surrounding the core and having a second index of refraction n2, such that n1>n2, said cladding having a plurality of stress rods and a plurality of air holes extending longitudinally through the length of said optical fiber; wherein said optical fiber supports a single polarization mode or poses-polarization maintaining properties within the operating wavelength range.