Abstract:
The present invention relates to a method and apparatus for determining radio link failure between the UE and the eNB in a wireless communication system. Particularly, the present invention provides a method and apparatus for determining radio link failure efficiently in such a way that the UE measures the radio link quality of the anchor carrier, the radio link qualities of the aggregated carriers, and the radio link quality of neighbor cells in order, and determines whether the radio link quality fulfills a predetermined condition.
Abstract:
A method for supporting frequency hopping of a transmission apparatus by a reception apparatus in a wireless communication system supporting Hybrid Automatic Repeat reQuest (HARQ). The method includes determining whether a particular transmission apparatus has a need to perform hopping of allocating a different logical channel every Transmission Time Interval (TTI); and when there is no need to perform hopping every TTI, sending to the transmission apparatus a command to perform hopping every multiple TTIs, and simultaneously signaling information on a number of the multiple TTIs.
Abstract:
A method of managing radio resources and a Node B implementing the same are provided. If the total radio resources used in a cell exceed target radio resources signaled by an RNC, uplink rates are equally allocated to primary UEs and non-primary UEs by controlling the signal strengths of the primary and non-primary UEs.
Abstract:
Provided is a resource allocation method that considers frequency scheduling gain and frequency diversity gain when uplink packet data is transmitted in a wireless communication system based on Orthogonal Frequency Division Multiplexing (OFDM). A method is provided in which Localized Frequency Division Multiple Access (LFDMA) technology capable of obtaining the frequency scheduling gain and Distributed Frequency Division Multiple Access (DFDMA) technology capable of obtaining the frequency diversity gain are mixed. A method is provided which signals sub-carrier sets mapped to the DFDMA and LFDMA, to terminals.
Abstract:
An apparatus and method are provided for setting gain factors for dedicated physical channels in a mobile communication system. The UE receives configuration information indicating uplink dedicated physical channel configuration. The UE sets a gain factor of a dedicated physical control channel (DPCCH) to 1 in the case that no DPDCH is configured. The UE calculates a gain factor of a enhanced dedicated physical control channel (E-DPCCH) using the gain factor of the DPCCH.
Abstract:
A communication apparatus and method of a mobile communication system using Orthogonal Frequency-Division Multiple Access (OFDMA). A method of transmitting an uplink acknowledge channel (ACKCH) for a downlink data channel in a mobile communication system using OFDMA includes: determining channel resources for each Control Channel Element (CCE), when a downlink control channel including at least two CCEs is received; generating uplink acknowledgement information by analyzing a received downlink data channel; assigning the at least two CCEs to at least two transmission antennas, respectively; and transmitting the uplink ACKCH including the uplink acknowledgement information through the transmission antennas.
Abstract:
A method and apparatus for transmitting and receiving signals using a codebook which maps each codeword to at least two different antennas is provided for a MIMO system. A transmission method includes mapping multiple codewords to multiple layers; mapping the multiple layers to multiple antennas using a precoding matrix selected from a rank-3 codebook which is designed to map the codewords to different antennas; and transmitting the codewords through paths formed by mapping the layers and the antennas. The precoding matrix of the rank-3 codebook is designed to equalize transmit power ratios between the antennas. The communication method and apparatus is advantageous to solve the problem of transmit power imbalance among the layers and the problem of performance degradation at the high SNR region in the conventional system using the rank-3 precoding matrices.
Abstract:
An apparatus for transmitting data in a frequency division multiple access based communication system is disclosed. The apparatus includes a symbol block generator for generating a symbol block in a predetermined symbol block period within one TTI when control information to be transmitted exists in the TTI, an FFT unit for performing FFT on the symbol block, and an IFFT unit for performing IFFT on signals output from the FFT unit and then transmitting the signals. The symbol block includes the control information and data to be transmitted. The TTI includes multiple symbol block periods.
Abstract:
A method and system are provided for transmitting data in a multiple-input multiple-output (MIMO) communication system. A receiver sets the number of sub-streams of each column of a preceding matrix with respect to all precoding matrices of channels formed between the receiver and a transmitter and measures channel states with respect to sub-stream combinations whose number is equivalent to the number of set sub-streams. The receiver transmits data according to channel states to the transmitter after measuring the channel states with respect to the sub-stream combinations and antenna combinations representing sub-streams used upon data transmission of all the precoding matrices.
Abstract:
An apparatus for transmitting data in a frequency division multiple access based communication system is disclosed. The apparatus includes a symbol block generator for generating a symbol block in a predetermined symbol block period within one TTI when control information to be transmitted exists in the TTI, an FFT unit for performing FFT on the symbol block, and an IFFT unit for performing IFFT on signals output from the FFT unit and then transmitting the signals. The symbol block includes the control information and data to be transmitted. The TTI includes multiple symbol block periods.