Abstract:
A direct type back light device includes a plurality of luminescent lamps, each having first and second opposite ends, first and second lower supports separated at a constant interval corresponding to a length of each of the luminescent lamps, the first and second lower supports each have a plurality of grooves for receiving one of the first and second opposite ends of the luminescent lamps to fix and support the luminescent lamps in parallel and conductive layers for supplying power to the luminescent lamps, and first and second upper supports formed to oppose the first and second lower supports, each of the first and second upper supports having grooves and conductive layers corresponding to the grooves and conductive layers of the first and second lower supports.
Abstract:
A method and device for driving a liquid crystal panel to display at least two pictures having different resolutions from each other. The method and device discriminate regions of images having different resolution from each other in an image signal to be applied to the liquid crystal panel. In the next. Also, the method and device adjust adjusting a brightness to be different difference in accordance with the images of the different resolutions.
Abstract:
A back light device includes a plurality of light emitting lamps, upper and lower holders having a plurality of recesses in opposing surfaces for receiving opposite ends of each the plurality of light emitting lamps, conductive layers on the opposing surfaces of the upper and lower holders for supplying power to opposite ends of the light emitting lamps, a conductive material on the conductive layers, and a light diffusion system over the upper holders.
Abstract:
A liquid crystal display device includes first and second substrates facing into each other, a gate line and a data line on an inner surface of the first substrate, the gate line and the data line defining a pixel region, a thin film transistor connected to the gate line and the data line, a pixel electrode connected to the thin film transistor and disposed at the pixel region, a color filter layer disposed closer than the pixel electrode from the first substrate, the color filter layer corresponding to the pixel electrode, a black matrix over the thin film transistor, a common electrode on an inner surface of the second substrate, and a liquid crystal layer interposed between the pixel electrode and the common electrode.
Abstract:
A method for fabricating thin film transistor-LCD is disclosed, wherein a pixel electrode and a gate metal in a cutting region of a pad part can be eliminated through two steps of etching in the same process. In a method for fabricating an LCD device provided with an active region where a plurality of gate lines are arranged to cross a plurality of data lines so as to define a pixel region, and a cutting region between a pad part of the gate line and a shorting bar, the method includes the steps of a first stage of forming gate line including a gate electrode in the active region on a substrate and forming a gate metal pattern for connecting the gate line and the shorting bar in the cutting region; a second stage of forming an insulating film on the entire surface of the active and cutting regions; a third stage of forming a TFT provided with source and drain electrodes in the active region; a fourth stage of depositing a passivation film on the entire surface of the active region and forming a contact hole at a drain electrode of the TFT and the gate metal pattern; a fifth stage of forming a transparent electrode for electrically connecting to the drain electrode through contact hole; a sixth stage of selectively etching the transparent electrode so that only a pixel electrode remains in the active region and the gate metal pattern is exposed in the cutting region; and a seventh stage of eliminating the gate metal pattern.
Abstract:
A laser annealing apparatus for sequential lateral solidification (SLS) to uniformly crystallize silicon on an entire silicon substrate by minimizing the dislocation of the silicon substrate during laser beam irradiation is disclosed. During the laser annealing, a vacuum chuck holds the silicon substrate on a movable stage. The device includes a laser source, an optical system patterning the shape and energy of a laser beam irradiated from the laser source, a vacuum chuck supporting a silicon substrate, and a movable stage supporting the vacuum chuck as well as transferring the vacuum chuck in a predetermined direction. Accordingly, the apparatus improves the degree of crystallization because it is able to uniformly carry out SLS on an entire surface of the silicon substrate.
Abstract:
An etchant for patterning indium tin oxide, wherein the etchant is a mixed solution of HCl, CH3COOH, and water, and a method of fabricating a liquid crystal display device are disclosed in the present invention. The method includes forming a gate electrode on a substrate, forming a gate insulating layer and an amorphous silicon layer on the gate electrode including the substrate, forming an active area by patterning the amorphous silicon layer, forming a source electrode and a drain electrode on the active area, forming a passivation layer on the source electrode and the drain electrode and the gate insulating layer, forming a contact hole exposing a part of the drain electrode, forming an indium tin oxide layer on the passivation layer, and forming an indium tin oxide electrode by selectively etching the indium tin oxide layer using a mixed solution of HCl, CH3COOH, and water as an etchant.
Abstract:
A liquid crystal display device having liquid crystal cells arranged in a matrix type, includes a gate line for receiving a scanning signal; a data line for receiving a data signal; a pixel electrode provided at an intersection of the gate line and the data line to drive a liquid crystal cell; a thin film transistor for responding to the scanning signal to switch the data signal into the pixel electrode; and an alignment film formed on at least a portion of the gate line, the data line and the pixel electrode to determine a primary alignment direction of a liquid crystal.
Abstract:
An active panel of a liquid crystal display having a thin film transistor and a pixel electrode arranged in a matrix pattern has a double gate us line. On a substrate, a gate bus line, a gate electrode and a gate pad are formed using a first metal such as aluminum having low electrical resistance and a second metal such as chromium having surface stability. Then, a dummy source bus line and a dummy source pad are formed prior to forming a source bus line and a source pad so as to eliminate line disconnection due to the cracks thereof and to thereby reduce the defects of the active panel and the increase production yield of the manufacturing process.
Abstract:
A liquid crystal display device include a gamma a voltage controller. The gamma voltage controller includes a voltage-divider network of resistive elements and is part of a gamma voltage circuit, which also includes a programmable digital-to-analog converter. The output voltage signals from the programmable digital-to-analog converter are input to the gamma voltage controller for requisite voltage division. The voltage difference between any two voltage signals output from the gamma voltage controller (i.e., the gamma reference voltage signals) can be finely aligned by setting appropriate values for different resistive elements in the gamma voltage controller. This allows generation of gamma reference voltage signals whose voltages can be precisely controlled according to the T-V characteristics of a liquid crystal display panel in the liquid crystal display device.