Abstract:
A liquid crystal display including a backlight unit and a liquid crystal display panel is provided. The backlight unit includes an exciting light source and quantum dot remote phosphor. Spectrum of the backlight unit has relative maximum brightness peaks BL1, BL2 and BL3 between 445 nm to 455 nm, between 528 nm to 538 nm, and between 618 nm to 628 nm, respectively. The liquid crystal display panel is disposed above the backlight unit and has a red color filter, a green color filter, a blue color filter and a yellow color filter, wherein areas of the red color filter, the green color filter, the blue color filter and the yellow color filter are ARAGABAY, respectively. The areas ARAGABAY satisfy the following relationship: 0.75
Abstract:
A current collector includes a plastic support film and a graphene film covering on at least one surface of the plastic support film. An electrochemical cell electrode includes the current collector and an electrode material layer covering on at least one surface of the current collector. An electrochemical cell is also provided which including the electrochemical cell electrode.
Abstract:
A method for cycling a sulfur composite lithium ion battery includes a step of charging and discharging the sulfur composite lithium ion battery at a first voltage range between a predetermined highest voltage and a predetermined lowest voltage. The lithium ion battery includes an electrode active material. The electrode active material includes a sulfur composite. The step of charging and discharging satisfies at least one conditions of (1) and (2): (1) the predetermined lowest voltage of the first voltage range is larger than a discharge cutoff voltage of the sulfur composite; and (2) the predetermined highest voltage of the first voltage range is smaller than a charge cutoff voltage of the sulfur composite. A method for using a sulfur composite as an electrode active material of a lithium ion battery is also disclosed.
Abstract:
Exemplary embodiments of method and apparatus for processing the images of fingerprints can be provided. For example, aligned images can be subjected to a tessellation process, whereas each image can be partitioned into a number of regions. Within each region at least one parameter associated with the ridges can be measured and stored. Such exemplary parameter can include, e.g., the prevailing ridge orientation, the average ridge separation and the phase of the ridges. The data can be projected and stored in a multidimensional coordinate system, whereas the representations of any two data can be separated by an amount corresponding to the dissimilarity of these data.
Abstract:
A method of making lenses includes the following steps: A. Provide a photo-curing material into a cavity between a first die and a second die. B. Expose the photo-curing material under predetermined light, whereby the photo-curing material is solidified, and a transmittance of the solidified photo-curing material is greater than 75%. C. Remove the first die and the second die to obtain a lens material; and D. Cut the lens material to obtain a plurality of lenses.
Abstract:
Various embodiments of the present invention provide systems and methods for data processing. A data processing circuit is disclosed that includes: a data detector circuit, a first symbol constrained arrangement circuit, and a second symbol constrained arrangement circuit. The data detector circuit is operable to apply a data detection algorithm to a combination of a first input data set and a decoded data set to yield a detected output that includes a number of non-binary symbols. The first symbol constrained arrangement circuit is operable to receive the detected output and to re-arrange the detected output in accordance with a first arrangement algorithm to yield a re-arranged output. The bits for at least one non-binary symbol from the detected output are maintained together in the re-arranged output. The second symbol constrained arrangement circuit is operable to receive a second input data set and to re-arrange the second data input in accordance with a second arrangement algorithm to yield the decoded data set. The bits for at least one non-binary symbol from the second input data set are maintained together in the decoded data set output.
Abstract:
An electronic device includes a housing, a circuit board accommodated in the housing, a number of I/O ports mounted on the circuit board, and a port shield secured to the housing. The housing defines a number of openings, and the I/O ports are exposed from the plurality of openings. The port shield defines a number of receiving spaces to receive and position the I/O ports, thereby preventing the plurality of I/O ports from becoming loose and detaching from the circuit board.
Abstract:
An electronic device includes a body, a disc lid rotatably mounted to the body and including two hooks, and a locking mechanism secured to the body and for locking the disc lid to and unlocking the disc lid from the body. The locking mechanism includes a sliding bar slidable relative to the body, and at least one resisting member secured to the body. The sliding bar is slidable between a locking position for locking the disc lid and an unlocking position for unlocking the disc lid. The sliding bar defines at least one sliding slot, and includes two latching members for respectively hooking the hooks when in the locked position and releasing the hooks when in the unlocked position. The at least one resisting member is slidably received in the sliding slot, and resists the sliding bar against the body to prevent the sliding bar from deforming.
Abstract:
A cable connector includes four first male connectors of a first type, a second male connector of a second type, and four third male connectors of the first type. The first male connectors compose a first input/output terminal. The second male connector and the four third male connectors compose a second input/output terminal. Each first male connector is electrically connected to the second male connector and a corresponding third male connector.
Abstract:
An electronic device includes a processor, a first storage unit, and a second storage unit. The first storage unit stores data generated by the processor in real time. The processor checks amount of storage space in use of the first storage unit, compares the current amount of used storage space of the first storage unit checked this time with a previous amount of used storage space of the first storage unit checked previously to determine whether the current amount of used storage space is greater than the previous amount of used storage space, obtains data that was stored in the storage space of the first storage unit since the previous check if the current used storage space is greater than the previously used storage space, and stores the obtained data in the second storage unit after the data is obtained.